13.已知傾斜角為α的直線l與直線x-2y+2=0平行,則sinα的值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{2}$

分析 由題意可得tanα=$\frac{1}{2}$,由同角三角函數(shù)關系可得sinα的值.

解答 解:∵直線x-2y+2=0的斜率為$\frac{1}{2}$,
且傾斜角為α的直線l與直線x-2y+2=0平行,
∴tanα=$\frac{1}{2}$,∵0<α<π,
∴sinα=$\frac{1}{\sqrt{1+4}}$=$\frac{\sqrt{5}}{5}$,
故選:B.

點評 本題考查直線的一般式方程和平行關系,考查同角三角函數(shù)關系,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸出x的值為127,則輸入的正整數(shù)x的所有可能取值的個數(shù)為( 。
A.2B.5C.3D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù)又在(0,π)上單調遞增的是( 。
A.y=tanxB.y=cos(-x)C.$y=-sin({\frac{π}{2}-x})$D.y=|tanx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,某處立交橋為一段圓弧AB.已知地面上線段AB=40米,O為AB中點.橋上距離地面最高點P,且OP高5米.工程師在OB中點C處發(fā)現(xiàn)他的正上方橋體有裂縫.需臨時找根直立柱,立于C處,用于支撐橋體.求直立柱的高度.(精確到0.01米).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)$y=2cos(\frac{π}{5}+3x)$的最小正周期為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,從參加環(huán)保知識競賽的學生中抽出80名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)[79.5,89.5)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$\overrightarrow a•\overrightarrow b=2$,則$|\overrightarrow a-\overrightarrow b|$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.用數(shù)學歸納法證明1+a1+a2+…+an+1=f(n)(n∈N*),在驗證n=1時,左邊所得的項為( 。
A.1B.1+a1+a2C.2D.1+a1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{2}+{y^2}=1$的右焦點為F,不垂直x軸且不過F點的直線l與橢圓C相交于A,B兩點.
(Ⅰ)若直線l經(jīng)過點P(2,0),則直線FA、FB的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(Ⅱ)如果FA⊥FB,原點到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

同步練習冊答案