6.下列各函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是( 。
A.y=-2x+1B.y=-x2C.y=x-2D.y=2x2

分析 直接根據(jù)一次函數(shù),二次函數(shù),冪函數(shù)的圖象和性質(zhì),對各選項確定單調(diào)性和單調(diào)區(qū)間.

解答 解:根據(jù)各類函數(shù)的性質(zhì)逐個考察各選項,
對于A選項:一次函數(shù)y=-2x+1在(0,+∞)內(nèi)單調(diào)遞減,因為一次項系數(shù)為負(fù);
對于B選項:二次函數(shù)y=-x2在(0,+∞)內(nèi)單調(diào)遞減,因為圖象開口向下;
對于C選項:冪函數(shù)y=x-2在(0,+∞)內(nèi)單調(diào)遞減,因為冪指數(shù)為負(fù);
對于D選項:二次函數(shù)y=2x2在(0,+∞)內(nèi)單調(diào)遞增,因為圖象開口向上.
故答案為:D.

點評 本題主要考查了函數(shù)單調(diào)性和單調(diào)區(qū)間的判斷,涉及一次函數(shù),二次函數(shù),和冪函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線C1:y2=2px(p>0)的焦點為F,圓C2:x2+y2=4,若C1與C2交于A,B兩點,且|AB|=2$\sqrt{3}$,則拋物線C1上的點P(m,3$\sqrt{3}$)到F的距離為(  )
A.$\frac{21}{2}$B.21C.$\frac{39}{2}$D.$\frac{39}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.sin 20°cos10°+cos20°sin170°=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,點D在邊CB的延長線上,且$\overrightarrow{CD}$=4$\overrightarrow{BD}$=r$\overrightarrow{AB}$-s$\overrightarrow{AC}$,r,s∈R,求s+r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-3|-|x+1|,命題p:關(guān)于x的不等式f(x)>a對x∈R恒成立;命題q:函數(shù)y=x2-ax+4在區(qū)間[5,+∞)上單調(diào)遞增.
(1)解不等式f(x)≤0;
(2)若命題“p或q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當(dāng)圓C1:x2+y2-6x-6y+2=0與C2:x2+y2+2x-8=0相交于A,B.
(1)兩圓交線AB所在的直線方程是4x+3y-5=0;
(2)過交點A,B的圓的方程可設(shè)為(x2+y2-6x-6y+2)+λ(x2+y2+2x-8)=0(λ∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在多面體ABCDEF中,底面ABCD為菱形,∠BAD=60°,△ADE為等邊三角形,且平面ADE⊥平面ABCD,EF $\stackrel{∥}{=}$$\frac{1}{2}$AB,點G為CD的中點.
(Ⅰ)證明:BD⊥EG;
(Ⅱ)求直線DE與平面BCF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某開心農(nóng)場要用一段長為40m的籬笆,圍成一個矩形菜園ABCD,若設(shè)菜園的邊長AB為xm,菜園的面積為ym2
(1)求y與x之間的函數(shù)關(guān)系式,寫出x的取值范圍;
(2)當(dāng)x為何值時,菜園面積最大?并求出最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知三棱柱ABC-A1B1C1的各棱長都為1,M是底面上BC邊的中點,N是側(cè)棱CC1上的點,且CN=$\frac{1}{4}$CC1,求證:AB1⊥MN.

查看答案和解析>>

同步練習(xí)冊答案