分析 換元法,設(shè)t=sinx+cosx,由三角函數(shù)知識可得t∈[-$\sqrt{2}$,$\sqrt{2}$],且sin2x=t2-1,可得f(x)=m(sinx+cosx)+sin2x=mt+t2-1,由二次函數(shù)區(qū)間的最值可得.
解答 解:設(shè)t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
∴t2=(sinx+cosx)2=1+sin2x,
∴sin2x=t2-1,
∴f(x)=m(sinx+cosx)+sin2x=mt+t2-1=(t-$\frac{m}{2}$)2-$\frac{1}{4}{m}^{2}$-1,
當(dāng)$\frac{m}{2}$≤0時,即m≤0時,此時f(x)max=f($\sqrt{2}$)=1+$\sqrt{2}$m,
當(dāng)$\frac{m}{2}$>0時,即m>0時,此時f(x)max=f(-$\sqrt{2}$)=1-$\sqrt{2}$m,
故f(x)max=$\left\{\begin{array}{l}{1+\sqrt{2}m,m≤0}\\{1-\sqrt{2}m,n>0}\end{array}\right.$.
點評 本題考查三角函數(shù)的值域,涉及換元法和三角函數(shù)的值域以及二次函數(shù)區(qū)間的最值,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7或$\frac{1}{7}$ | B. | 5或$\frac{1}{5}$ | C. | 3或$\frac{1}{3}$ | D. | e或$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com