12.設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{\sqrt{2}}{2}$)x-1,若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>0),有4個(gè)不同的根,則a的范圍是(8,+∞).

分析 由已知中可以得到函數(shù)f(x)是一個(gè)周期函數(shù),且周期為4,將方程f(x)-loga(x+2)=0恰有4個(gè)不同的實(shí)數(shù)解,轉(zhuǎn)化為函數(shù)f(x)的與函數(shù)y=-loga(x+2)的圖象恰有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可得到實(shí)數(shù)a的取值范圍.

解答 解:∵對(duì)于任意的x∈R,都有f(x-2)=f(2+x),
∴f(x+4)=f[2+(x+2)]=f[(x+2)-2]=f(x),
∴函數(shù)f(x)是一個(gè)周期函數(shù),且T=4.
又∵當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{\sqrt{2}}{2}$)x-1,且函數(shù)f(x)是定義在R上的偶函數(shù),
若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有4個(gè)不同的實(shí)數(shù)解,
則函數(shù)y=f(x)與y=loga(x+2)在區(qū)間(-2,6)上有四個(gè)不同的交點(diǎn),如下圖所示:

又f(-2)=f(2)=f(6)=1,
則對(duì)于函數(shù)y=loga(x+2),
由題意可得,當(dāng)x=6時(shí)的函數(shù)值小于1,
即loga8<1,
由此解得:a>8,
∴a的范圍是(8,+∞)
故答案為:(8,+∞).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象與性質(zhì),其中根據(jù)方程的解與函數(shù)的零點(diǎn)之間的關(guān)系,將方程根的問(wèn)題轉(zhuǎn)化為函數(shù)零點(diǎn)問(wèn)題,是解答本題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化和數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C的焦點(diǎn)為F1(-$\sqrt{2}$,0),F(xiàn)2($\sqrt{2}$,0),且橢圓C的下頂點(diǎn)到直線x+y-2=0的距離為3$\sqrt{2}$/2.
(1)求橢圓C的方程;
(2)若一直線l:y=kx+m與橢圓C相交于A、B(A、B不是橢圓C 的頂點(diǎn))兩點(diǎn),以AB為直徑的圓過(guò)橢圓C 的上頂點(diǎn),求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若關(guān)于x的方程$\sqrt{1-{x}^{2}}$=lg(x-a)有正數(shù)解,則實(shí)數(shù)a的取值范圍(  )
A.-10<a≤0B.-1<a≤0C.0≤a<1D.0≤a<10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)f(x)=$\frac{(x+a)lnx}{x+1}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若對(duì)于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}滿足a1=1,an+1-2an=3n,則an=3n-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是$\frac{12}{13}$,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( 。
A.11?B.12?C.13?D.14?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如右圖,在△ABC中,$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{NC}$,P是BN上的一點(diǎn),若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$,則實(shí)數(shù)m的值為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若F關(guān)于直線y=$\sqrt{3}$x的對(duì)稱點(diǎn)P在雙曲線上,則C的離心率為( 。
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,以拋物線y2=16x的焦點(diǎn)為其中一個(gè)焦點(diǎn),以雙曲線$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{9}$=1的焦點(diǎn)為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若E,F(xiàn)是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),P是橢圓上任意一點(diǎn),則當(dāng)直線PE,PF的斜率都存在,并記為kPE、kPF時(shí),kPE•kPF是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案