17.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是$\frac{12}{13}$,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( 。
A.11?B.12?C.13?D.14?

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算變量S的值,并輸出,模擬程序的運行,用表格對程序運行過程中各變量的值進行分析,不難得到輸出結(jié)果.

解答 解:由已知可得該程序的功能是計算并輸出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$的值,
若輸出的結(jié)果是$\frac{12}{13}$,
則最后一次執(zhí)行累加的k值為12,
則退出循環(huán)時的k值為13,
故退出循環(huán)的條件應(yīng)為:k≥13?,
故選:C

點評 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,過橢圓右焦點F2作兩條互相垂直的弦AB與CD,當(dāng)直線AB的斜率為0時,|AB|+|CD|=7.
(Ⅰ)求橢圓的方程;
(Ⅱ)求|AB|+|CD|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.根據(jù)下面各個數(shù)列{an}的首項和遞推關(guān)系,求其通項公式.
(1)a1=1,an+1=an+2n(n∈N*);
(2)a1=1,an+1=+$\frac{n}{n+1}$an(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將2名教師,4名學(xué)生分成2個小組,分別安排到甲、乙兩地參加社會實踐活動,每個小組既要有教師,又要有學(xué)生,不同的安排方案共有28種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0]時,f(x)=($\frac{\sqrt{2}}{2}$)x-1,若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>0),有4個不同的根,則a的范圍是(8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在區(qū)間(1,4)上為減函數(shù),在區(qū)間(6,+∞)上為增函數(shù),則實數(shù)a的取值范圍為( 。
A.(-∞,0]B.[-1,3]C.[3,5]D.[5,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知某幾何體的直觀圖(圖1)與它的三視圖(圖2),其中俯視圖為正三角形,其它兩個視圖是矩形,已知D是棱A1C1的中點.
(1)求證:BC1∥平面AB1D
(2)求二面角B1-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某市教育局邀請教育專家深入該市多所中小學(xué),開展聽課、訪談及隨堂檢測等活動.他們把收集到的180節(jié)課分為三類課堂教學(xué)模式:教師主講的為A模式,少數(shù)學(xué)生參與的為B模式,多數(shù)學(xué)生參與的為C模式.A、B、C三類課的節(jié)數(shù)比例為3:2:1
(Ⅰ)為便于研究分析,教育專家將A模式稱為傳統(tǒng)課堂模式,B、C統(tǒng)稱為新課堂模式,根據(jù)隨堂檢測結(jié)果,把課堂教學(xué)效率分為高效和非高效,根據(jù)檢測結(jié)果統(tǒng)計得到如下2×2列聯(lián)表(單位:節(jié))
高效非高效統(tǒng)計
新課堂模式603090
傳統(tǒng)課堂模式405090
統(tǒng)計10080180
請根據(jù)統(tǒng)計數(shù)據(jù)回答:有沒有99%的把握認(rèn)為課堂教學(xué)效率與教學(xué)模式有關(guān)?并說明理由.
(Ⅱ)教育專家采用分層抽樣的方法從收集到的180節(jié)課中選出18節(jié)課作為樣本進行研究,并從樣本的B模式和C模式課堂中隨機抽取3節(jié)課.
①求至少有一節(jié)為C模式課堂的概率;
②設(shè)隨機抽取的3節(jié)課中含有C模式課堂的節(jié)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考臨界值表:
P(K2≧K00.100.050.0250.0100.0050.001
K02.7063.8415.0246.6357.89710.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n =a +b +c +d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,則f(1)=-1,若f(f(a))≤3,則實數(shù)a的取值范圍是(-∞,$\sqrt{3}$].

查看答案和解析>>

同步練習(xí)冊答案