【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
【答案】(1)證明見解析;(2)1
【解析】
(1)取AD的中點(diǎn)O, 連接P0,BO,BD,利用三線合一得出BO⊥AD,PO⊥AD,故AD⊥平面PBO,,于是AD⊥PB。(2)利用勾股定理得出PO⊥BO,可得PO⊥平面ABCD,用棱錐的體積公式計(jì)算即可
(1)證明:取AD的中點(diǎn)O,連接P0,BO,BD,
∵底面ABCD是等邊三角形
∴BO⊥AD,
又∵PA=PD,即ΔPAD等腰三角形,
∴PO⊥AD,
又∵POBO=0.
∴AD⊥平面PBO,
又∵PB平面PBO.
∴AD⊥PB;
(2)解:AB=PA=2
∴由(1)知ΔPAD是邊長為2的正三角形,則PO=.
又∵PB=,
∴PO2+BO2=PB2,即PO⊥BO,
又由(1)知,PO⊥AD.且BOAD=O.
∴PO⊥平面ABCD.
∴
∴三棱錐P-BCD的體積為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)
(1)是的極小值點(diǎn);
(2)函數(shù)有且只有1個(gè)零點(diǎn);
(3)恒成立;
(4)設(shè)函數(shù),若存在區(qū)間,使在上的值域是,則.
上述說法正確的序號為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB∥CD,AB⊥AD,PA⊥平面ABCD,E是棱PC上一點(diǎn).
(1)證明:平面ADE⊥平面PAB.
(2)若PE=4EC,O為點(diǎn)E在平面PAB上的投影,,AB=AP=2CD=2,求四棱錐P-ADEO的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,其圖象關(guān)于直線對稱.給出下面四個(gè)結(jié)論:①將的圖象向右平移個(gè)單位長度后得到函數(shù)圖象關(guān)于原點(diǎn)對稱;②點(diǎn)為圖象的一個(gè)對稱中心;③;④在區(qū)間上單調(diào)遞增.其中正確的結(jié)論為( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點(diǎn),以為圓心作半徑為的圓,圓與軸的負(fù)半軸交于點(diǎn),與拋物線分別交于點(diǎn).
(1)若為直角三角形,求半徑的值;
(2)判斷直線與拋物線的位置關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,的周長為.
(1)求橢圓的方程;
(2)已知直線l經(jīng)過點(diǎn),且與橢圓交于不同的兩點(diǎn),若(為坐標(biāo)原點(diǎn))成等比數(shù)列,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個(gè)極值點(diǎn),試求實(shí)數(shù)的取值范圍;
(2)若且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長是焦距的2倍,且過點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)為橢圓C上的動(dòng)點(diǎn),F為橢圓C的右焦點(diǎn),A、B分別為橢圓C的左、右頂點(diǎn),點(diǎn)滿足.
①證明:為定值;
②設(shè)Q是直線上的動(dòng)點(diǎn),直線AQ、BQ分別另交橢圓C于M、N兩點(diǎn),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com