已知命題p:實數(shù)m滿足方程
x2
m-3a
+
y2
m-4a
=1(a>0)表示焦點在x軸上的雙曲線,命題q:實數(shù)m滿足方程
x2
m-1
+
y2
2-m
=1表示焦點在y軸上的橢圓,且p是q的充分不必要條件,求實數(shù)a的取值范圍.
考點:必要條件、充分條件與充要條件的判斷
專題:圓錐曲線的定義、性質(zhì)與方程,簡易邏輯
分析:根據(jù)雙曲線和橢圓的簡單性質(zhì),求出命題p,q中m的取值范圍,進而結(jié)合充要條件的定義,可得答案.
解答: 解:若方程
x2
m-3a
+
y2
m-4a
=1(a>0)表示焦點在x軸上的雙曲線,
則m-3a>0,且m-4a<0,(a>0),
解得3a<m<4a,
即p:3a<m<4a.
若方程
x2
m-1
+
y2
2-m
=1表示焦點在y軸上的橢圓,
則2-m>m-1>0,
解得1<m<
3
2
,
即q:1<m<
3
2

若q是p的必要不充分條件,
則p⇒q,
從而有:
3a≥1
4a≤
3
2
,
解得
1
3
≤a≤
3
8
點評:判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.
(1)求函數(shù)f(x)在[-2,2]上的最值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+3x+8,求g(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),f(
1
2
)=1
如果對于0<x<y,都有f(x)>f(y),不等式f(-x)+f(3-x)≥-2的解集為( 。
A、[-1,0)∪(3,4]
B、[-1,0)
C、(3,4]
D、[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的函數(shù)f(x)=
1
x2-2x-3
的定義域為集合A,函數(shù)g(x)=-x-a(-4≤x≤0)的值域為集合B.
(1)求集合A,B;
(2)若集合A,B滿足A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ是第二象限角,cos
θ
2
-sin
θ
2
=
1-sinθ
,則角
θ
2
的終邊所在的象限是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x+
π
3
)-1,x∈[0,
π
3
]的值域為
 
,并且取最大值時x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x+1)=6x+5,則f(x)的解析式是( 。
A、3x+2B、3x+1
C、3x-1D、3x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x+1
+
4-x2
的定義域為( 。
A、[-2,0)∪(0,2]
B、(-1,0)∪(0,2]
C、[-2,2]
D、(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α是第二象限角,p(x,4)為其終邊上的一點,且cosα=
1
5
x,則tan2α=( 。
A、
24
7
B、-
24
7
C、
12
7
D、-
12
7

查看答案和解析>>

同步練習(xí)冊答案