【題目】已知圓C:(x-1)2+(y-2)2=2,過點P(2,-1)作圓C的切線,切點為AB.

(1)求直線PA,PB的方程;

(2)求過P點的圓C的切線長.

【答案】(1).(2)2.

【解析】

 試題(1)設切線點斜式方程,再根據(jù)圓心到切線距離等于半徑求斜率(2)根據(jù)切線長公式得過P點的圓C的切線長

試題解析:(1)切線的斜率存在,設切線方程為

y+1=k(x-2),即kxy-2k-1=0.

圓心到直線的距離等于,即

k2-6k-7=0,解得k=7或k=-1,

故所求的切線方程為

y+1=7(x-2)或y+1=-(x-2),

即7xy-15=0或xy-1=0.

(2)在Rt△PAC中|PA|2=|PC|2-|AC|2

=(2-1)2+(-1-2)2-2=8,

∴過P點的圓C的切線長為2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設S為復數(shù)集C的非空子集.如果
(1)S含有一個不等于0的數(shù);
(2)a,b∈S,a+b,a﹣b,ab∈S;
(3)a,b∈S,且b≠0,∈S,那么就稱S是一個數(shù)域.
現(xiàn)有如下命題:
①如果S是一個數(shù)域,則0,1∈S;
②如果S是一個數(shù)域,那么S含有無限多個數(shù);
③復數(shù)集是數(shù)域;
④S={a+b|a,b∈Q,}是數(shù)域;
⑤S={a+bi|a,b∈Z}是數(shù)域.
其中是真命題的有 (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),).在以坐標原點為極點軸正半軸為極軸的極坐標系中,曲線

(1)說明是哪一種曲線,并將的方程化為極坐標方程;

(2)直線的極坐標方程為,其中滿足,若曲線的公共點都在 上,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:+=1(a>b>0),e= , 其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為 , 且(其中λ>1).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos2,g(x)=1+sin 2x.

(1)設x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值.

(2)若函數(shù)h(x)=f(x)+g(x)在區(qū)間上的最大值為2,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足2Sn+an=1;遞增的等差數(shù)列{bn}滿足b1=1,b3=﹣4.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn是an , bn的等比中項,求數(shù)列{}的前n項和Tn;
(3)若ct2+2t﹣2對一切正整數(shù)n恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(Ⅰ)若袋中共有10個球,
(i)求白球的個數(shù);
(ii)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機變量ξ的數(shù)學期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于 . 并指出袋中哪種顏色的球個數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,圓的方程為.

(1)求的普通方程和的直角坐標方程;

(2)當時,相交于,兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin2x+cos(2x﹣ ).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在(0, )上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案