分析 先將原函數(shù)變成f(x)=$3+\frac{4}{x-1}$,根據(jù)減函數(shù)的定義,設(shè)x1>x2>2,通過作差證明f(x1)<f(x2)即可.
解答 證明:f(x)=$\frac{3(x-1)+4}{x-1}=3+\frac{4}{x-1}$;
設(shè)x1>x2>2,則:
$f({x}_{1})-f({x}_{2})=\frac{4}{{x}_{1}-1}-\frac{4}{{x}_{2}-1}$=$\frac{4({x}_{2}-{x}_{1})}{({x}_{1}-1)({x}_{2}-1)}$;
∵x1>x2>2;
∴x2-x1<0,x1-1>0,x2-1>0;
∴f(x1)<f(x2);
∴f(x)在(2,+∞)上是單調(diào)減函數(shù).
點(diǎn)評 考查分離常數(shù)法化簡函數(shù)解析式,減函數(shù)的定義,以及根據(jù)減函數(shù)的定義證明一個(gè)函數(shù)為減函數(shù)的方法及過程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com