A. | 80 | B. | 90 | C. | 120 | D. | 130 |
分析 由已知可得:公比q≠1,q>0.由于Sn=3,S3n=39,可得$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=3,$\frac{{a}_{1}(1-{q}^{3n})}{1-q}$=39,解得qn=3.$\frac{{a}_{1}}{1-q}$=-$\frac{3}{2}$.即可得出.
解答 解:由已知可得:公比q≠1,q>0.
∵Sn=3,S3n=39,
∴$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=3,$\frac{{a}_{1}(1-{q}^{3n})}{1-q}$=39,
化為q2n+qn-12=0,
解得qn=3.
∴$\frac{{a}_{1}}{1-q}$=-$\frac{3}{2}$.
則S4n=$\frac{{a}_{1}(1-{q}^{4n})}{1-q}$=-$\frac{3}{2}×(1-{3}^{4})$=120.
故選:C.
點評 本題考查了等比數列的通項公式性質及其前n項和公式、一元二次方程的解法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com