【題目】長沙某超市計劃按月訂購一種冰激凌,每天進(jìn)貨量相同,進(jìn)貨成本為每桶5元,售價為每桶7元,未售出的冰激凌以每桶3元的價格當(dāng)天全部處理完畢.根據(jù)往年銷售經(jīng)驗,每天的需求量與當(dāng)天最高氣溫(單位:)有關(guān),如果最高氣溫不低于,需求量為600桶;如果最高氣溫(單位:)位于區(qū)間,需求量為400桶;如果最高氣溫低于,需求量為200桶.為了確定今年九月份的訂購計劃,統(tǒng)計了前三年九月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫() | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求九月份這種冰激凌一天的需求量(單位:桶)的分布列;
(2)設(shè)九月份一天銷售這種冰激凌的利潤為(單位:元),當(dāng)九月份這種冰激凌一天的進(jìn)貨量(單位:桶)為多少時,的均值取得最大值?
【答案】(1)見解析;(2)當(dāng)時,的數(shù)學(xué)期望取得最大值640。
【解析】
(1)由已知得,的可能取值為200,400,600,記六月份最高氣溫低于20為事件,最高氣溫位于區(qū)間,為事件,最高氣溫不低于25為事件,結(jié)合頻數(shù)分布表,用頻率估計概率,能求出六月份這種冰激凌一天的需求量(單位:桶)的分布列.
(2)結(jié)合題意得當(dāng)時,,分別求出當(dāng),,時的數(shù)學(xué)期望,由此能求出當(dāng)時,的數(shù)學(xué)期望取得最大值640.
(1)由已知得,的可能取值為200,400,600,記六月份最高氣溫低于20為事件,最高氣溫位于區(qū)間,為事件,最高氣溫不低于25為事件,
根據(jù)題意,結(jié)合頻數(shù)分布表,用頻率估計概率,
可知,
故六月份這種冰激凌一天的需求量(單位:桶)的分布列為:
200 | 400 | 600 | |
(2)結(jié)合題意得當(dāng)時,,
當(dāng)時,,
當(dāng)時,
,
當(dāng)時,
,
所以當(dāng)時,的數(shù)學(xué)期望取得最大值640.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x,x∈R.
(1)當(dāng)m取何值時,方程|f(x)-2|=m有一個解?兩個解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;
(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中隨機抽取3人,求被抽到班同學(xué)人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | n | 0.350 | |
第3組 | 30 | p | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計 | 100 | 1.000 |
(1)求頻率分布表中n,p的值,并估計該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)().
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項公式.
(2)設(shè),若數(shù)列是等差數(shù)列,求實數(shù)的值;
(3)在(2)的條件下,設(shè) 記數(shù)列的前項和為,若對任意的存在實數(shù),使得,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斐波那契數(shù)列,又稱黃金分割數(shù)列.因數(shù)學(xué)家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”,指的是這樣一個數(shù)列:1、1、2、3、5、8、13、21、34、…..,在數(shù)學(xué)上,斐波那契數(shù)列以如下被遞推的方法定義:,,.這種遞推方法適合研究生活中很多問題.比如:一六八中學(xué)食堂一樓到二樓有15個臺階,某同學(xué)一步可以跨一個或者兩個臺階,則他到二樓就餐有( )種上樓方法.
A.377B.610C.987D.1597
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.命題“若,則”的逆否命題為:“若,則”
B.“”是“”的充分而不必要條件
C.若且為假命題,則、均為假命題
D.命題“存在,使得”,則非“任意,均有”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;
(2)當(dāng)時,求函數(shù)的最大值及最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com