北京某商廈計(jì)劃同時(shí)出售空調(diào)和洗衣機(jī),由于這兩種產(chǎn)品供不應(yīng)求,因此根據(jù)成本、工資確定產(chǎn)品的月供應(yīng)量,以使得總利潤(rùn)達(dá)到最大.通過(guò)調(diào)查,得到有關(guān)數(shù)據(jù)如下表:
資  金 單位產(chǎn)品所需資金(百元) 資金供應(yīng)量
(百元)
洗衣機(jī) 空   調(diào)
成  本 20 30 300
工  資 10 5 110
單位利潤(rùn) 8 6  
試問(wèn):怎樣確定兩種產(chǎn)品的月供應(yīng)量,才能使總利潤(rùn)達(dá)到最大,最大利潤(rùn)是多少?
考點(diǎn):簡(jiǎn)單線性規(guī)劃的應(yīng)用
專(zhuān)題:數(shù)形結(jié)合法,不等式的解法及應(yīng)用
分析:根據(jù)每月的資金供應(yīng)量,我們先列出滿足條件的約束條件,進(jìn)而畫(huà)出可行域,平移目標(biāo)函數(shù)的變形直線,可得最優(yōu)解.
解答: 解:設(shè)空調(diào)機(jī)、洗衣機(jī)的月供應(yīng)量分別是x、y臺(tái),總利潤(rùn)是P,則P=6x+8y,
由題意有
30x+20y≤300
5x+10y≤110
x≥0,y≥0
,x、y均為整數(shù).
目標(biāo)函數(shù)是 z=6x+8y,即直線y=-
3
4
x+
z
8
,
P過(guò)M(4,9)時(shí),縱截距最大.這時(shí)P也取最大值Pmax=6×4+8×9=96(百元).
故當(dāng)月供應(yīng)量為空調(diào)機(jī)4臺(tái),洗衣機(jī)9臺(tái)時(shí),可獲得最大利潤(rùn)9600元.
點(diǎn)評(píng):本題考查線性規(guī)劃知識(shí)的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想.用圖解法解決線性規(guī)劃問(wèn)題時(shí),分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}共有12項(xiàng),其中a1=0,a5=2,a12=5,且|ak+1-ak|=1,k=1,2,3…,11,則滿足這種條件的不同數(shù)列的個(gè)數(shù)為( 。
A、84B、168
C、76D、152

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校有高一學(xué)生720人,現(xiàn)從高一、高二、高三這三個(gè)年級(jí)學(xué)生中采用分層抽樣的方法,抽取180人進(jìn)行英語(yǔ)水平測(cè)試.已知抽取的高一學(xué)生數(shù)是抽取的高二學(xué)生數(shù)、高三學(xué)生數(shù)的等差中項(xiàng),且高二年級(jí)抽取40人,則該校高三學(xué)生人數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(1,-2)
,
b
=(-3,1)
,
c0
是與
a
-
b
平行的單位向量,則
c0
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí).若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元.
(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)x與騎兵個(gè)數(shù)y表示每天的利潤(rùn)W(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足
2x-y≤0
x-2y+3≥0
x≥0
,則z=log2(x+y+1)
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知甲、乙兩種不同品牌的PVC管材都可截成A、B、C三種規(guī)格的成品配件,且每種PVC管同時(shí)截得三種規(guī)格的成品個(gè)數(shù)如下表:
A規(guī)格成品(個(gè)) B規(guī)格成品(個(gè)) C規(guī)格成品(個(gè))
品牌甲(根) 2 1 1
品牌乙(根) 1 1 2
現(xiàn)在至少需要A、B、C三種規(guī)格的成品配件分別是6個(gè)、5個(gè)、6個(gè),若甲、乙兩種PVC管材的價(jià)格分別是20元/根、15元/根,則完成以上數(shù)量的配件所需的最低成本是(  )
A、70元B、75元
C、80元D、95元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(x-a)(x-b)-2,(a<b),并且α,β是方程f(x)=0的兩根,(α<β),則實(shí)數(shù)a,b,α,β大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=1-x,則關(guān)于x的方程f(x)=log9(x+1)解的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案