【題目】如圖,在四棱錐中,PA⊥底面ABCDBCAD,ABBC,,,MPD的中點(diǎn).

1)求證:CM∥平面PAB

2)求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)取的中點(diǎn),可證得四邊形為平行四邊形,從而得到,由線面平行判定定理可證得結(jié)論;

2)根據(jù)垂直關(guān)系可以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,根據(jù)二面角的向量求法可求得結(jié)果.

1)如圖,取的中點(diǎn),連接.

分別為的中點(diǎn),,

,四邊形為平行四邊形,

,又平面,平面,平面.

2)由題意知:兩兩垂直,以為坐標(biāo)原點(diǎn),所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系:

,,,,

,,

設(shè)平面的法向量,

,令,則,.

平面,為平面的一個(gè)法向量,

,

二面角為銳二面角,二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于的不等式恒成立,求的取值范圍;

2)當(dāng)時(shí),求證:

3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.

1)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?

2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)。

1)求函數(shù)的單調(diào)減區(qū)間;

2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,四分位數(shù)是指把一組數(shù)由小到大排列并分成四等份,處于三個(gè)分割點(diǎn)位置的數(shù)值為,,,其中是這組數(shù)的中位數(shù),分別可看作這組數(shù)被分成的前后兩組數(shù)的中位數(shù).利用四分位數(shù)可以繪制統(tǒng)計(jì)學(xué)中的箱形圖:先找出一組數(shù)的最大值、最小值和三個(gè)四分位數(shù);然后連接畫出“箱子”,中位數(shù)在“箱子”中間;再將最大值和最小值與箱子相連接(如圖①).某老師繪制了一次數(shù)學(xué)小測(cè)驗(yàn)中甲、乙、丙三個(gè)班級(jí)學(xué)生得分的箱形圖(如圖②),根據(jù)該圖判斷下列說法錯(cuò)誤的是(

A.三個(gè)班級(jí)中,甲班分?jǐn)?shù)的方差最小

B.三個(gè)班級(jí)中,乙班分?jǐn)?shù)的極差最大

C.丙班得分低于80的學(xué)生人數(shù)多于得分高于80的學(xué)生人數(shù)

D.若每班有42個(gè)學(xué)生,則三個(gè)班級(jí)的第11名中,丙班的分?jǐn)?shù)最高

查看答案和解析>>

同步練習(xí)冊(cè)答案