分析 設(shè)B(cosθ,sinθ),0≤θ≤π,C(m,n)(m,n>0),運用兩點的距離公式和兩直線垂直的條件:斜率之積為-1,可得m,n的方程,解方程可得C的坐標,運用兩點的距離公式,化簡整理,運用正弦函數(shù)的值域,即可得到所求最大值.
解答 解:曲線y=$\sqrt{1-{x^2}}$是以O(shè)為圓心,1為半徑的上半圓,
可設(shè)B(cosθ,sinθ),0≤θ≤π,C(m,n)(m,n>0),
由等腰直角三角形ABC,可得
AB⊥AC,即有$\frac{n}{m-2}$•$\frac{sinθ}{cosθ-2}$=-1,①
|AB|=|AC|,即有$\sqrt{(m-2)^{2}+{n}^{2}}$=$\sqrt{(cosθ-2)^{2}+si{n}^{2}θ}$,
即為(m-2)2+n2=(cosθ-2)2+sin2θ,②
由①②解得m=2+sinθ,n=2-cosθ,
或m=2-sinθ,n=cosθ-2(舍去).
則|OC|=$\sqrt{(2+sinθ)^{2}+(2-cosθ)^{2}}$
=$\sqrt{8+si{n}^{2}θ+co{s}^{2}θ+4sinθ-4cosθ}$
=$\sqrt{9+4\sqrt{2}sin(θ-\frac{π}{4})}$,
當θ-$\frac{π}{4}$=$\frac{π}{2}$,即θ=$\frac{3π}{4}$∈[0,π],取得最大值$\sqrt{9+4\sqrt{2}}$=1+2$\sqrt{2}$.
故答案為:1+2$\sqrt{2}$.
點評 本題考查兩點的距離公式的運用,考查圓的參數(shù)方程的運用,以及兩直線垂直的條件:斜率之積為-1,同時考查正弦函數(shù)的值域,以及運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{13}{e^3},\frac{7}{e^2}]$ | B. | $(\frac{13}{e^3},\frac{7}{e^2}]$ | C. | $[\frac{7}{e^2},\frac{3}{e}]$ | D. | $(\frac{7}{e^2},\frac{3}{e}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com