17.直線x=1的極坐標(biāo)方程是( 。
A.ρ=1B.ρ=cosθC.ρcosθ=1D.$ρ=\frac{1}{cosθ}$

分析 利用極坐標(biāo)與直角坐標(biāo)方程的互化公式即可得出.

解答 解:x=1化為極坐標(biāo):ρcosθ=1,
故選:C.

點(diǎn)評 本題考查了直角坐標(biāo)與極坐標(biāo)方程的互化,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)$f(x)={x^{\frac{1}{2}}}-1$,則y=-f(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線y2=2px(p>0),過點(diǎn)(m,0)作一直線交拋物線于A(x1,y1),B(x1,y1)兩點(diǎn),若kOA•kOB=-2,則m的值為( 。
A.$\frac{p}{2}$B.pC.2pD.$\frac{3p}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知α為第三象限角,$f(α)=\frac{{sin({α-\frac{π}{2}})cos({\frac{3}{2}π+α})tan({π-α})}}{{tan({-α-π})sin({-α-π})}}$.
(1)化簡f(α);
(2)若$cos({α-\frac{3}{2}π})=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了檢驗(yàn)“喜歡玩手機(jī)游戲與認(rèn)為作業(yè)多”是否有關(guān)系,某班主任對班級的30名學(xué)生進(jìn)行了調(diào)查,得到一個2×2列聯(lián)表:
(1)請將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程);
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多合計(jì)
喜歡玩手機(jī)游戲182
不喜歡玩手機(jī)游戲6
合計(jì)30
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為“喜歡玩手機(jī)游戲”與“認(rèn)為作業(yè)多”有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a,b,c是角A,B,C的對邊,若tanAtanB=tanAtanC+tanCtanB,則$\frac{{a}^{2}+^{2}}{{c}^{2}}$=(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(t)=\sqrt{\frac{1-t}{1+t}}$,F(xiàn)(x)=sinx•f(cosx)+cosx•f(sinx)且$π<x<\frac{3π}{2}$.
(Ⅰ)將函數(shù)F(x)化簡成Asin(ωx+φ)+B(其中A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函數(shù)F(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)i是虛數(shù)單位,則復(fù)數(shù)$\frac{2i}{1-i}$在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知:f(x)=$\left\{{\begin{array}{l}{{2^{x-2}}}\\{lo{g_2}(x-1)}\end{array}}\right.\begin{array}{l}{(x≤2)}\\{(x>2)}\end{array}$,則f(f(5))等于1.

查看答案和解析>>

同步練習(xí)冊答案