12.某理財(cái)產(chǎn)品年復(fù)利率為10%,存期為3年,王老師打算用10000元進(jìn)行理財(cái),到期后他可得( 。
A.13000元B.13310元C.12000元D.12300元

分析 利用等比數(shù)列通項(xiàng)公式求解即可.

解答 解:某理財(cái)產(chǎn)品年復(fù)利率為10%,存期為3年,所以公比為:1.1,
王老師打算用10000元進(jìn)行理財(cái),到期后他可得:10000×1.13=13310(元).
故選:B.

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.A為三角形ABC的一個(gè)內(nèi)角.若sinA+cosA=$\frac{12}{25}$.則這個(gè)三角形的形狀為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某國際旅行社為準(zhǔn)備2002年韓日世界杯足球賽,招聘了10名翻譯人員,其中4人會說朝鮮語,2人既會說朝鮮語又會說日語,現(xiàn)打算從10人中選4人作朝鮮語翻譯,4人作日語翻譯,分別帶領(lǐng)球迷團(tuán)赴韓日觀看足球賽,則不同的選派翻譯的方法有61(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.依法納稅是每個(gè)公民應(yīng)盡的義務(wù),國家征收個(gè)人工資、薪金所得稅是分段計(jì)算的:總收入不超過3500元,免征個(gè)人工資、薪金所得稅;超過3500元的部分需征稅,設(shè)全月應(yīng)納稅額(所得額指工資、薪金中應(yīng)納稅的部分)為x,x=(全月總收入-“三險(xiǎn)一金”-扣除數(shù))元,稅率如表所示:
級  數(shù)全月應(yīng)納稅所得額x稅  率
1不超過1500元的部分3%
2超過1500元至4500元的部分10%
3超過4500元至9000元的部分20%
4超過9000元至35000元的部分25%
5超過35000元至55000元的部分30%
6超過55000元至80000元的部分35%
7超過80000元的部分45%
(1)若應(yīng)納稅所得額為f(x),試用分段函數(shù)表示1~3級納稅額f(x)的計(jì)算公式;
(2)某單位按工資額的19%為其職工繳納“三險(xiǎn)一金”(養(yǎng)老保險(xiǎn)8%、醫(yī)療保險(xiǎn)2%、失業(yè)保險(xiǎn)1%、住房公積金8%),2014年1月份該單位某職工繳稅40.8元,請問該職工該月總收入多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow{a}$=3$\overrightarrow{x}$+4$\overrightarrow{y}$,$\overrightarrow$=2$\overrightarrow{x}$-3$\overrightarrow{y}$,則$\overrightarrow{x}$=$\frac{3}{17}$$\overrightarrow{a}$+$\frac{4}{17}$$\overrightarrow$,$\overrightarrow{y}$=$\frac{2}{17}$$\overrightarrow{a}$-$\frac{3}{17}$$\overrightarrow$(用$\overrightarrow{a}$,$\overrightarrow$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在極坐標(biāo)系中有如下三個(gè)結(jié)論:
①點(diǎn)P在曲線C上,則點(diǎn)P的極坐標(biāo)滿足曲線C的極坐標(biāo)方程;
②tanθ=1與θ=$\frac{π}{4}$表示同一條曲線;  
③ρ=3與ρ=-3表示同一條曲線. 
在這三個(gè)結(jié)論中正確的是( 。
A.①③B.C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),X軸的正半軸為極軸,建立坐標(biāo)系,兩個(gè)坐標(biāo)系取相同的單位長度.已知直線L的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsina\end{array}\right.$(t為參數(shù),0<a<π),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(1)求曲線C的直角坐標(biāo)方程
(2)設(shè)直線L與曲線C相交于A,B兩點(diǎn),|AB|=8時(shí),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)m、n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若m⊥α,n⊥α,則m∥n;④若α⊥β,m⊥β,則m∥α;
其中正確命題的序號是( 。
A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知:p:方程x2-2mx+1=0有兩個(gè)不等的正根;q:不等式|x-1|>m的解集為R.若p且q為假命題,?p為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案