【題目】在三棱錐ABC﹣A1B1C1中,底面ABC是邊長(zhǎng)為2的正三角形,側(cè)棱AA1⊥底面ABC,AA1= ,P、Q分別是AB、AC上的點(diǎn),且PQ∥BC.
(1)若平面A1PQ與平面A1B1C1相交于直線l,求證:l∥B1C1;
(2)當(dāng)平面A1PQ⊥平面PQC1B1時(shí),確定點(diǎn)P的位置并說(shuō)明理由.S.
【答案】
(1)證明:∵PQ∥BC∥B1C1,B1C1面A1B1C1,PQ面 A1B1C1,
∴PQ∥面A1B1C1;
∵面A1PQ∩面A1B1C1=l,∴PQ∥l,
∴l(xiāng)∥B1C1;
(2)證明:P為AB的中點(diǎn)時(shí),平面A1PQ⊥面PQC1B1;
證明如下:作PQ的中點(diǎn)M,B1C1的中點(diǎn)N,連接A1M,MN,A1N,
∵PQ∥BC,AP=AQ,進(jìn)而A1Q=A1P,∴A1M⊥PQ,
∵平面A1PQ⊥面PQC1B1,平面A1PQ∩面PQC1B1=PQ,
∴A1M⊥面PQC1B1,而MN面PQC1B1,
∴A1M⊥MN,即△A1MN為直角三角形;
連接AM并延長(zhǎng)交BC于G,顯然G是BC的中點(diǎn),
設(shè)AP=x,則PB=2﹣x,則由 = ,可得 = ,解得AM= x,
在Rt△AA1M中, = +AM2= + x2.
同理MG=AG﹣AM= ﹣ x,
在Rt△MGN中,MN2=MG2+GN2= + = ﹣3x+ x2.
∴在Rt△A1MN中, = +MN2,
即3= + x2+ ﹣3x+
解得x=1,即AP=1,此時(shí)P為AB的中點(diǎn)
【解析】(1)利用線面平行的性質(zhì)證明l∥B1C1;(2)作PQ的中點(diǎn)M,B1C1的中點(diǎn)N,連接A1M,MN,A1N,利用線面垂直的判定證明A1M⊥PQ,A1M⊥MN,即可平面A1PQ⊥面PQB1C1 , 再利用余弦定理即可確定P點(diǎn)的位置.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用平面的基本性質(zhì)及推論和平面與平面垂直的性質(zhì),掌握如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線;兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)如果且關(guān)于的方程有兩解, (),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知D是以點(diǎn)A(4,1),B(﹣1,﹣6),C(﹣2,3)為頂點(diǎn)的三角形區(qū)域(包括邊界及內(nèi)部).
(1)寫出表示區(qū)域D的不等式組;
(2)設(shè)點(diǎn)B(﹣1,﹣6)、C(﹣2,3)在直線4x﹣3y﹣a=0的異側(cè),求a的取值范圍;
(3)若目標(biāo)函數(shù)z=kx+y(k<0)的最小值為﹣k﹣6,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】20名同學(xué)參加某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績(jī)落在, 中的學(xué)生人數(shù);
(Ⅲ)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人的成績(jī)都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實(shí)數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為 ( )
(參考數(shù)據(jù): )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一個(gè)平面去截正方體,對(duì)于截面的邊界,有以下圖形:①鈍角三角形;②直角梯形;③菱形;④正五邊形;⑤正六邊形.則不可能的圖形的選項(xiàng)為( )
A.③④⑤
B.①②⑤
C.①②④
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn), , 分別為橢圓的右、下頂點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點(diǎn), .
(i) 若, 關(guān)于軸對(duì)稱,求直線的斜率;
(ii) 求證: 的面積與的面積相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(Ⅰ)求證: 平面;
(Ⅱ)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成銳二面角為,試求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com