分析 (1)由a,b及sinA的值,利用正弦定理求出sinB的值,由a小于b得到A小于B,可得出此時B有兩解;
(2)由a小于c,得到A小于C,由A為鈍角,得到C也為鈍角,不能構成三角形,可知此三角形無解;
(3)由a,b及sinA的值,利用正弦定理求出sinB=1,可得B=$\frac{π}{2}$,即三角形一個解;
(4)利用正弦定理求出sinC=$\frac{csinB}$=$\frac{5\sqrt{3}}{9}$,可求C有銳角和鈍角兩種解.
解答 解:(1)∵a=14,b=16,A=45°,
∴由正弦定理得:sinB=$\frac{bsinA}{a}$=$\frac{16×\frac{\sqrt{2}}{2}}{14}$=$\frac{4\sqrt{2}}{7}$>$\frac{\sqrt{2}}{2}$,
∵a<b,∴45°=A<B,
∴B有兩解;
(2)由a=12,c=15,得到a<c,
有A<C,而A=120°,得到C也為鈍角,
則此三角形無解;
(3)∵a=8,b=16,A=30°,
∴sinB=$\frac{bsinA}{a}$=1,
∴B=$\frac{π}{2}$,故三角形一個解;
(4)∵b=18,c=20,B=60°.
∴sinC=$\frac{csinB}$=$\frac{5\sqrt{3}}{9}$,
∵0<C<π,故C有銳角和鈍角兩種解.
點評 此題考查了正弦,三角形的邊角關系,以及三角形的內(nèi)角和定理,正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦定理是解本題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.45 | B. | 0.6 | C. | 0.75 | D. | 0.8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{25}$ | B. | $\frac{6}{25}$ | C. | $\frac{19}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com