20.已知cosα=$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),則sin2α的值為( 。
A.-$\frac{12}{25}$B.-$\frac{24}{25}$C.$\frac{12}{25}$D.$\frac{24}{25}$

分析 由已知利用同角三角函數(shù)基本關系式可求sinα,進而利用二倍角的正弦函數(shù)公式即可計算得解.

解答 解:∵cosα=$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{4}{5}$.
∴sin2α=2sinαcosα=2×$\frac{3}{5}×(-\frac{4}{5})$=-$\frac{24}{25}$.
故選:B.

點評 本題主要考查了同角三角函數(shù)基本關系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=(x-a)ln(ax)(a>0且a≠1)的圖象與x軸交于A(x1,0),B(x2,0)兩點.
(1)設曲線y=f(x)在A,B處的切線的斜率分別為k1,k2,求證:k1+k2<0;
(2)設x0是f(x)的極值點,比較$\sqrt{{x}_{1}{x}_{2}}$,x0,$\frac{{x}_{1}+{x}_{2}}{2}$的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.sin80°cos40°+cos80°sin40°等于(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,那么平行四邊形ABCD 是(  )
A.平行四邊形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.有13名醫(yī)生,其中女醫(yī)生6人現(xiàn)從中抽調(diào)5名醫(yī)生組成醫(yī)療小組前往災區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設不同的選派方法種數(shù)為N,則下列等式:
①C135-C71C64;②C72C63+C73C62+C74C61+C75;  ③C135-C71C64-C65;   ④C72C113
其中能成為N的算式是②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知{an}為等差數(shù)列,且a4+a7+a10=30,則a1-a3-a6-a8-a11+a13的值為( 。
A.10B.-10C.20D.-20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量,其中$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$在$\overrightarrow$上的投影為2,則$\overrightarrow{a}$•$\overrightarrow$=2,$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知命題p:?x∈R,x2+2x+m≤0,命題q:指數(shù)函數(shù)f(x)=(3-m)x是增函數(shù),若“p∨q”為真命題,“p∧q”為假命題,則實數(shù)m的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.10101010 (2)=170 (10)

查看答案和解析>>

同步練習冊答案