分析 (1)由題意易得n=10,可得通項(xiàng)Tk+1=${C}_{10}^{k}$•x30-5k,令30-5k=0可解得k=6,可得答案;
(2)易得${C}_{n}^{0}$-$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{4}$${C}_{n}^{2}$-$\frac{1}{8}$${C}_{n}^{3}$+…+(-1)n•${C}_{n}^{n}$=(1-$\frac{1}{2}$)n,代入n值計(jì)算可得.
解答 解:(1)∵(x3+$\frac{1}{{x}^{2}}$)n展開式中第六項(xiàng)的二項(xiàng)式系數(shù)最大,
∴二項(xiàng)展開式共11項(xiàng),∴n=10
∴展開式的通項(xiàng)Tk+1=${C}_{10}^{k}({x}^{3})^{10-k}(\frac{1}{{x}^{2}})^{k}$=${C}_{10}^{k}$•x30-5k,
令30-5k=0可解得k=6,
∴展開式中不含x的項(xiàng)為T7=${C}_{10}^{6}$=${C}_{10}^{4}$=210;
(2)${C}_{n}^{0}$-$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{4}$${C}_{n}^{2}$-$\frac{1}{8}$${C}_{n}^{3}$+…+(-1)n•${C}_{n}^{n}$
=(1-$\frac{1}{2}$)n=(1-$\frac{1}{2}$)10=$\frac{1}{1024}$
點(diǎn)評 本題考查二項(xiàng)式定理,涉及二項(xiàng)式系數(shù)的性質(zhì),屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com