已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4、S10、S7成等差數(shù)列.
(Ⅰ)求證而a3,a9,a6成等差數(shù)列;
(Ⅱ)若a1=1,求數(shù)列{a3n}的前n項(xiàng)的積.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)直接由等比數(shù)列的前n項(xiàng)和結(jié)合S4、S10、S7成等差數(shù)列得到等比數(shù)列的公比的關(guān)系,兩邊同時(shí)乘以a1得答案;
(Ⅱ)由(Ⅰ)求出等比數(shù)列的公比,然后直接由{a3n}的前n項(xiàng)的積結(jié)合等比數(shù)列的前n項(xiàng)和得答案.
解答: 解:(Ⅰ)當(dāng)q=1時(shí),2S10≠S4+S7
∴q≠1,
由2S10=S4+S7,得
2a1(1-q10)
1-q
=
a1(1-q4)
1-q
+
a1(1-q7)
1-q

∵a1≠0,q≠1,
∴2q10=q4+q7,
2a1q8=a1q2+a1q5,
∴2a9=a3+a6,
∴a3,a9,a6成等差數(shù)列;
(Ⅱ)依題意設(shè)數(shù)列{an3}的前n項(xiàng)的積為Tn,
Tn=a13a23an3
=13•q3•(q23…(qn-13
=(q31+2+…+(n-1)=(q3)
n(n-1)
2

又由(Ⅰ)得2q10=q4+q7,
∴2q6-q3-1=0,解得q3=1(舍),q3=-
1
2

Tn=(-
1
2
)
n(n-1)
2
點(diǎn)評(píng):本題考查了等差關(guān)系的確定,考查了等比數(shù)列的前n項(xiàng)和,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且過(guò)兩點(diǎn)(4,0),(0,2)的橢圓的標(biāo)準(zhǔn)方程是(  )
A、
x2
4
+
y2
2
=1
B、
y2
4
+
x2
2
=1
C、
y2
16
+
x2
4
=1
D、
x2
16
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線的標(biāo)準(zhǔn)方程為
x2
25-k
+
y2
9-k
=1
(1)若曲線表示雙曲線,試求k的取值范圍;
(2)在(1)的條件下,求其焦點(diǎn)坐標(biāo);
(3)在(1)的條件下,若曲線經(jīng)過(guò)點(diǎn)(
15
,-1)
,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知直線l:y=-1,定點(diǎn)F(0,1),過(guò)平面內(nèi)動(dòng)點(diǎn)P作PQ丄l于Q點(diǎn),且
QP
QF
=
FP
FQ

(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)過(guò)點(diǎn)P作圓x2+(y-2)2=4的兩條切線,分別交x軸于點(diǎn)B、C,當(dāng)點(diǎn)P的縱坐標(biāo)y0>4時(shí),試用y0表示線段BC的長(zhǎng),并求△PBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(1,2),
b
=(-1,0),若(
a
+m
b
)⊥
a
,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x-1
(x∈[2,6])則f(x)的最大值與最小值的和為( 。
A、3B、2.4C、4.2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F(-1,0),過(guò)點(diǎn)F的直線交橢圓于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(-
4
7
,
3
7
)

(1)求橢圓E的方程;
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一輛客車下午1時(shí)從甲地出發(fā),以60km/h的速度勻速行駛2h后到達(dá)乙地,在乙地停留0.5h,然后以80km/h的速度勻速行駛3h后到達(dá)丙地,請(qǐng)以時(shí)間t(h)為橫坐標(biāo)、客車行駛的路程s(km)為縱坐標(biāo)建立直角坐標(biāo)系,并在坐標(biāo)系中畫出每個(gè)整點(diǎn)時(shí)對(duì)應(yīng)的點(diǎn),再用線段將它們連起來(lái).根據(jù)圖象提供的信息回答下列問(wèn)題:
(1)下午3時(shí)和6時(shí)時(shí),客車行駛的路程分別是多少?
(2)哪一段時(shí)間內(nèi),客車行駛的路程沒(méi)有發(fā)生改變?
(3)甲地經(jīng)乙地到丙地的路程是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過(guò)點(diǎn)A(1,2),傾斜角為
π
3
,圓C的參數(shù)方程為
x=3cosθ
y=3sinθ
(為參數(shù)),
(1)求直線l的參數(shù)方程;
(2)若直線l與圓C交于兩點(diǎn)B、C,求|AB|•|AC|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案