已知、是兩條不同的直線,、是兩個(gè)不同的平面,則下列命題中正確的是
A.若,且,則
B.若,且,則
C.若,且,則
D.若,且,則
A

試題分析:對(duì)于A.若,且,則 符合面面垂直判定定理,成立。
對(duì)于B.若,且,則,只有當(dāng)m,n相交的時(shí)候能成立,故錯(cuò)誤。
對(duì)于C.若,且,則 ,那么兩個(gè)平面可能是一般的相交,不一定垂直,錯(cuò)誤。
對(duì)于D.根據(jù)兩條平行線中的一條垂直與該平面,則另一條也垂直與該平面,那么可知兩個(gè)平面可能是一般相交,因此錯(cuò)誤,故選A.
點(diǎn)評(píng):熟練的運(yùn)用面面的平行的位置關(guān)系中判定定理和性質(zhì)定理來(lái)分析證明,屬于基礎(chǔ)題?疾榱丝臻g想象能力。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知如圖(1),正三角形ABC的邊長(zhǎng)為2a,CDAB邊上的高,EF分別是ACBC邊上的點(diǎn),且滿足,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).

(Ⅰ) 求二面角B-AC-D的大;
(Ⅱ) 若異面直線ABDE所成角的余弦值為,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,點(diǎn)E、F、G分別是DD1、AB、CC1的中點(diǎn).直線A1E與GF所成角等于__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)直線和平面,下列四個(gè)命題中,正確的是(  )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,已知S是正三角形ABC所在平面外的一點(diǎn),且SA=SB=SC,SG為△SAB上的高,D、E、F分別是AC、BC、SC的中點(diǎn),試判斷SG與平面DEF的位置關(guān)系,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一邊BC在平面內(nèi),頂點(diǎn)A在平面外,已知,三角形所在平面與所成的二面角為,則直線所成角的正弦值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是兩不同直線,是兩不同平面,則下列命題錯(cuò)誤的是
A.若,,則
B.若,,,則
C.若,
D.若,,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1丄底面ABC.

(I)若M、N分別是AB,A1C的中點(diǎn),求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長(zhǎng)均為2,側(cè)棱BB1與底面 ABC所成的角為60°.問(wèn)在線段A1C1上是否存在一點(diǎn)P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說(shuō)明 理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體中,與平面所成的角的余弦值為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案