分析 (1)x=ρcos θ,y=ρsin θ,由ρ=4cos θ得ρ2=4ρcosθ.利用互化公式可得直角坐標方程.同理可得圓O2的直角坐標方程.
(2)由兩圓的方程相減得過交點的直線的直角坐標方程.
解答 解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(1)x=ρcos θ,y=ρsin θ,
由ρ=4cos θ得ρ2=4ρcos θ.所以x2+y2=4x.
即x2+y2-4x=0為圓O1的直角坐標方程.
同理x2+y2+y=0為圓O2的直角坐標方程.
(2)由方程x2+y2=4x與x2+y2+y=0相減得過交點的直線的直角坐標方程為4x+y=0.
點評 本題考查了直角坐標方程與極坐標方程互化、曲線相交公共弦問題,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{11}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3<m≤-1或7≤m<9 | B. | -3≤m≤-1或7≤m≤9 | C. | -3<m<-1或7<m<9 | D. | -3<m<-1或7≤m<9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | ||
C. | 先減后增 | D. | 無法判斷其單調(diào)性 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,$\frac{π}{4}$) | B. | (2,$\frac{3π}{4}$) | C. | (1,$\frac{π}{4}$) | D. | (1,$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | $\frac{52}{5}$ | C. | $\frac{46}{5}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com