19.若函數(shù)f(x)=x-acosx在R上遞增,則實數(shù)a的取值范圍為[-1,1].

分析 求出函數(shù)的導(dǎo)數(shù),則1+asinx≥0在R恒成立,根據(jù)三角函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:∵f(x)=x-acosx,
∴f′(x)=1+asinx,
若函數(shù)f(x)=x-acosx在R上遞增,
則1+asinx≥0在R恒成立,
則實數(shù)a的范圍是[-1,1],
故答案為:[-1,1].

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及三角函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{BA}=({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$,$\overrightarrow{CB}=({\frac{{\sqrt{3}}}{2},\frac{1}{2}})$,則∠ABC=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.ρ=4sinθ所對應(yīng)的直角坐標(biāo)方程為x2+y2=4y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知算法流程圖如圖,請用語言描述該算法流程圖的功能輸出100以內(nèi)能被3和5整除的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A={x|0≤x<4},B={x∈N|1≤x≤3},則A∩B=(  )
A.{x|1≤x≤3}B.{x|0≤x<4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)目標(biāo)函數(shù)z=x+ay的可行域是△ABC的內(nèi)部及邊界,其中A(1,0),B(3,1),C(2,3).若目標(biāo)函數(shù)取得最小值的最優(yōu)解有無窮多個,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U={1,2,3,4,5},集合A={1,2,4},集合B={1,5},則A∩(∁UB)等于(  )
A.{2,4}B.{1,2,4}C.{2,3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.[重點中學(xué)做]如圖所示,以O(shè)x為始邊作角α與β(0<β<α<π),它們的終邊分別與單位圓相交于點P、Q,已知點P的橫坐標(biāo)為-$\frac{4}{5}$.
(1)求$\frac{sin2α+cos2α}{1+co{s}^{2}a}$的值;
(2)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{\sqrt{3}}{3}$,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知在等差數(shù)列{an}中,a4=7,a2+a7=16.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=${2}^{{a}_{n}}$+n,求數(shù)列{bn}的前n項和Tn的表達式.

查看答案和解析>>

同步練習(xí)冊答案