1.設(shè)f(x)是定義在R上的減函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足$\frac{f(x)}{f′(x)}$+x<2016.下面不等式正確的是 ( 。
A.f(x)>0B.f(x)<0C.2f(2018)>f(2017)D.2f(2018)≤f(2017)

分析 構(gòu)造函數(shù)g(x)=(x-2016)f(x),求出g(x)的單調(diào)性,從而求出答案.

解答 解:∵f(x)是定義在R上的減函數(shù),其導(dǎo)函數(shù)為f′(x),
∴f′(x)<0在R恒成立,
∵$\frac{f(x)}{f′(x)}$+x<2016,∴f(x)+(x-2016)f′(x)>0,
令g(x)=(x-2016)f(x),則g′(x)=f(x)+(x-2016)f′(x)>0,
∴g(x)在R遞增,
∴g(2018)>g(2017),
即2f(2018)>f(2017),
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)=(x-2016)f(x)是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知α是鈍角,β是銳角,則α-β的范圍是(0°,180°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),函數(shù)f(x)的圖象如圖所示,則f(0)的值為( 。
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.高一(1)班有男生30人,女生20人,現(xiàn)用分層抽樣的方法從中抽取5人參加某項(xiàng)活動(dòng),則男生應(yīng)抽取的人數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某射擊選手每次射擊擊中目標(biāo)的概率是0.8,如果他連續(xù)射擊4次,則這名射手恰有3次擊中目標(biāo)的概率是( 。
A.C${\;}_{4}^{3}$0.83×0.2B.C${\;}_{4}^{3}$0.83C.0.83×0.2D.C${\;}_{4}^{3}$0.8×0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.cos1050°的值為( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a,b∈R,且ab≠0,則下列結(jié)論恒成立的是(  )
A.a+b≥2$\sqrt{ab}$B.a2+b2>2abC.$\frac{a}$+$\frac{a}$≥2D.|${\frac{a}$+$\frac{a}}$|≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知($\frac{a}{{x}^{3}}$+$\frac{\sqrt{3}x}{3}$)10的展開式中x2項(xiàng)的系數(shù)是$\frac{1}{2}$,其中a>0,則a的值為$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,直線L的方程$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{\sqrt{2}}{2}t}\\{y=2-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),OX軸為極軸,取相同的單位長度,建立極坐標(biāo)系,曲線C的方程為ρ=2$\sqrt{3}$cosθ.
(1)求直線L和曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C與直線L交于A,B兩點(diǎn),若P($\sqrt{3}$,2),求|AB|和|PA|+|PB|.

查看答案和解析>>

同步練習(xí)冊答案