分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù) 第九章即可;
(Ⅱ)根據(jù)函數(shù)f(x)是增函數(shù),等價為f′(x)≥0恒成立,即可得到結(jié)論;
(Ⅲ)令g(x)=$\frac{1}{2}$(3x2+$\frac{1}{x^2}$-6x),x∈(0,1],分別求出f(x)的最大值和g(x)的最小值,從而求出a的范圍即可.
解答 解:(Ⅰ)a=3時,f(x)=lnx+x2-3x,(x>0),
f′(x)=$\frac{1}{x}$+2x-3=$\frac{{2x}^{2}-3x+1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
令f′(x)>0,解得:x>1或0<x<$\frac{1}{2}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<1,
∴f(x)在(0,$\frac{1}{2}$)遞增,在($\frac{1}{2}$,1)遞減,在(1,+∞)遞增,
∴極大值$f({\frac{1}{2}})=-\frac{5}{4}-ln2$,極小值f(1)=-2;
(Ⅱ)函數(shù)的定義域?yàn)椋?,+∞),
要使f(x)=lnx+x2-ax在定義域內(nèi)是增函數(shù),
則等價為f′(x)≥0恒成立,
∵f(x)=lnx+x2-ax,
∴f′(x)=$\frac{1}{x}$+2x-a≥0,
即a≤$\frac{1}{x}$+2x恒成立,
當(dāng)x>0時,y=$\frac{1}{x}$+2x≥2 $\sqrt{\frac{1}{x}•2x}$=2$\sqrt{2}$,
則a≤2$\sqrt{2}$,即$a∈({-∞,2\sqrt{2}}]$;
(Ⅲ)由(Ⅱ)得:f(x)在(0,1]遞增,
f(x)max=f(1)=1-a,
令g(x)=$\frac{1}{2}$(3x2+$\frac{1}{x^2}$-6x),x∈(0,1],
g′(x)=$\frac{{3x}^{3}(x-1)-1}{x}$<0,
g(x)在(0,1]遞減,
g(x)min=g(1)=-1,
若f(x)≤$\frac{1}{2}$(3x2+$\frac{1}{x^2}$-6x)在x∈(0,1]內(nèi)恒成立,
則f(x)max≤g(x)min,
即1-a≤-1,解得:a≥2,
由(Ⅱ)a≤2$\sqrt{2}$,
故2≤a≤2$\sqrt{2}$.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨¬q | C. | ¬p∧¬q | D. | ¬p∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M={3,2},N={(3,2)} | B. | M={3,2},N={2,3} | ||
C. | M={(x,y)|y=-x+1},N={y|y=1-x} | D. | M={1,2},N={(2,1)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{9}{4}$ | C. | $-\frac{4}{9}$ | D. | $-\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$)x>($\frac{1}{2}$)y | B. | x-2>y-2 | C. | x${\;}^{\frac{1}{2}}$>y${\;}^{\frac{1}{4}}$ | D. | log0.2x>log0.2y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com