已知函數(shù).
(1)試判斷函數(shù)的單調性;
(2)設,求在上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數(shù)的底數(shù)).
(1)函數(shù)在上單調遞增,在上單調遞減;
(2)在上的最大值為;
(3)證明過程詳見試題解析.
解析試題分析:(1)先對函數(shù)求導,令導函數(shù)為0,即可求得函數(shù)在上單調遞增,在上單調遞減. (2)結合函數(shù)的單調性,分時,時,三種情況進行討論,即可求在上的最大值;(3) 把證明過程轉化為恒成立問題即可.
試題解析:(1)解:(1)函數(shù)的定義域是.由已知.令,得.
因為當時,;當時,.
所以函數(shù)在上單調遞增,在上單調遞減.
(2)由(1)可知當,即時,在上單調遞增,所以.
當時,在上單調遞減,所以.當,即時,.綜上所述,
(3)由(1)知當時.所以在時恒有,即,當且僅當時等號成立.因此對任意恒有.因為,,所以,即.因此對任意,不等式.
考點:導函數(shù)的應用、最值問題、恒成立問題.
科目:高中數(shù)學 來源: 題型:解答題
據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(污染源)的污染強度分別為,它們連線上任意一點C處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設().
(1)試將表示為的函數(shù); (2)若,且時,取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個如圖所示的不規(guī)則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點至兩端點所在直線的距離)的拋物線形的一部分,現(xiàn)要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若直線與的反函數(shù)的圖象相切,求實數(shù)k的值;
(2)設,討論曲線與曲線公共點的個數(shù);
(3)設,比較與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線 y = x3 + x-2 在點 P0 處的切線 平行于直線
4x-y-1=0,且點 P0 在第三象限,
⑴求P0的坐標;
⑵若直線 , 且 l 也過切點P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)R).
(1)若曲線在點處的切線與直線平行,求的值;
(2)在(1)條件下,求函數(shù)的單調區(qū)間和極值;
(3)當,且時,證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
二次函數(shù),它的導函數(shù)的圖象與直線平行.
(1)求的解析式;
(2)若函數(shù)的圖象與直線有三個公共點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(1)若曲線在點處的切線平行于軸,求的值;
(2)當時,若對,恒成立,求實數(shù)的取值范圍;
(3)設,在(1)的條件下,證明當時,對任意兩個不相等的正數(shù)、,有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com