在正項等比數(shù)列{an}中,lga3+lga6+lga9=6,則a5•a7的值是( 。
A、10000B、1000
C、100D、10
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由已知利用對數(shù)的運算性質(zhì)求得a3a6a9=106,然后利用等比數(shù)列的運算性質(zhì)求得a5•a7的值.
解答: 解:在正項等比數(shù)列{an}中,由lga3+lga6+lga9=6,得
lg(a3a6a9)=6,a3a6a9=106,
a63=106,a6=100,
則a5•a7=a62=10000
故選:A.
點評:本題考查了等比數(shù)列的性質(zhì),考查了對數(shù)的運算性質(zhì),是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知α是第二象限角,且sin(
π
2
)=-
1
3
,則tan2α的值為( 。
A、
4
2
7
B、-
4
2
7
C、
4
2
9
D、-
4
2
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
4
-
y2
21
=1的左、右焦點,P為雙曲線右支上的任意一點,則
|PF1|2
|PF2| 
的最小值為( 。
A、24B、20C、16D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過點P(0,2)作直線l交橢圓
x2
2
+y2=1于A,B兩點.
(1)若△AOB的面積是
2
3
,求直線l的方程(其中O為原點).
(2)當△AOB的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

⊙A的方程為x2+y2-2x-2y-7=0,⊙B的方程為x2+y2+2x+2y-2=0,判斷⊙A和⊙B是否相交.若相交,求過兩交點的直線的方程及兩交點間的距離;若不相交,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足an=2an-1+2n+1(n∈N*,n≥2),a1=2.
(1)設bn=
1
2n
(an+1),求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosx-
3
sin2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在x∈[0,
π
2
]的值域;
(Ⅲ)能否把函數(shù)f(x)的圖象進行適當?shù)钠揭频玫揭粋奇函數(shù)的圖象?如果能,寫出一個平移的方法;如果不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)已知條件完成下列小題:
(1)已知橢圓的焦點在y軸,且a+c=20,a-c=4,求橢圓的標準方程;
(2)已知雙曲線的焦點在x軸,焦距是8,離心率e=2,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點A在圓x2+y2-7x+4y+16=0上,點B(6,-4),求線段AB的中點O的軌跡.

查看答案和解析>>

同步練習冊答案