【題目】已知點、、、(),都在函數(shù)(,)的圖像上;
(1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等比數(shù)列;
(2)設(shè),函數(shù)的反函數(shù)為,若函數(shù)與函數(shù)的圖像有公共點,求證:在直線上;
(3)設(shè),(),過點、的直線與兩坐標軸圍成的三角形面積為,問:數(shù)列是否存在最大項?若存在,求出最大項的值,若不存在,請說明理由;
【答案】(1)證明見解析;(2)證明見解析;(3)存在,.
【解析】
(1)結(jié)合指數(shù)函數(shù)性質(zhì),根據(jù)等比數(shù)列定義進行論證;
(2)先求反函數(shù),再利用反證法證明結(jié)論;
(3)先根據(jù)點斜式得直線方程,再根據(jù)截距以及三角形面積公式求出,再利用數(shù)列單調(diào)性確定其最大值.
(1)設(shè)數(shù)列公差為
因為在函數(shù)上,所以
因此數(shù)列是等比數(shù)列;
(2)
假設(shè)不在直線上,所以
,即M不在上,與為函數(shù)與函數(shù)的圖像有公共點矛盾,所以在直線上;
(3)因為,,所以、
令得,令得,
所以為單調(diào)遞減數(shù)列,其最大項為
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,滿足:.
(1)若,求數(shù)列的通項公式;
(2)若,且.
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項的值均未在該數(shù)列中重復出現(xiàn)無數(shù)次,求首項應(yīng)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,對于任意滿足,且,數(shù)列滿足,,其前項和為.
(1)求數(shù)列、的通項公式;
(2)令,數(shù)列的前項和為,求證:對于任意正整數(shù),都有;
(3)將數(shù)列、的項按照“當為奇數(shù)時,放在前面”,“當為偶數(shù)時,放在前面”的要求進行“交叉排列”得到一個新的數(shù)列:、、、、、、、、求這個新數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式在上恒成立,求的取值范圍;
(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷在上是否存在極值.若存在,判斷極值的正負;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)過點的直線,交橢圓于兩點,點在橢圓上,坐標原點恰為的重心,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,其中.
(1)若數(shù)列前四項,,,依次成等差數(shù)列,求,的值;
(2)若,且數(shù)列為等比數(shù)列,求的值;
(3)若,且是數(shù)列的最小項,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】垃圾分一分,城市美十分;垃圾分類,人人有責.某市為進一步推進生活垃圾分類工作,調(diào)動全民參與的積極性,舉辦了“垃圾分類游戲挑戰(zhàn)賽”.據(jù)統(tǒng)計,在為期個月的活動中,共有萬人次參與.為鼓勵市民積極參與活動,市文明辦隨機抽取名參與該活動的網(wǎng)友,以他們單次游戲得分作為樣本進行分析,由此得到如下頻數(shù)分布表:
單次游戲得分 | ||||||
頻數(shù) |
(1)根據(jù)數(shù)據(jù),估計參與活動的網(wǎng)友單次游戲得分的平均值及標準差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(其中標準差的計算結(jié)果要求精確到)
(2)若要從單次游戲得分在、、的三組參與者中,用分層抽樣的方法選取人進行電話回訪,再從這人中任選人贈送話費,求此人單次游戲得分不在同一組內(nèi)的概率.
附:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】華東師大二附中樂東黃流中學位于我國南海邊,有一片美麗的沙灘和一彎天然的海濱浴場.如圖,海岸線MAN,,(海岸線MAN上方是大海),現(xiàn)用長為BC的欄網(wǎng)圍成一個三角形學生游泳場所,其中.
(1)若,求三角形游泳場所面積最大值;
(2)若BC=600,,由于學生人數(shù)的增加需要擴大游泳場所面積,現(xiàn)在折線MBCN上方選點D,現(xiàn)用長為BD,DC的欄圍成一個四邊形游泳場所DBAC,使,求四邊形游泳場所DBAC的最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市對城市路網(wǎng)進行改造,擬在原有a個標段(注:一個標段是指一定長度的機動車道)的基礎(chǔ)上,新建x個標段和n個道路交叉口,其中n與x滿足n=ax+5.已知新建一個標段的造價為m萬元,新建一個道路交叉口的造價是新建一個標段的造價的k倍.
(1)寫出新建道路交叉口的總造價y(萬元)與x的函數(shù)關(guān)系式;
(2)設(shè)P是新建標段的總造價與新建道路交叉口的總造價之比.若新建的標段數(shù)是原有標段數(shù)的20%,且k≥3.問:P能否大于,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com