【題目】已知數(shù)列滿足,其中.
(1)若數(shù)列前四項,,,依次成等差數(shù)列,求,的值;
(2)若,且數(shù)列為等比數(shù)列,求的值;
(3)若,且是數(shù)列的最小項,求的取值范圍.
【答案】(1) (2)答案不唯一,見解析 (3)
【解析】
(1)由已知求出,由等差數(shù)列的定義得的方程可求解;
(2)由求出值,代入已知遞推式求出,驗(yàn)證它是等比數(shù)列;
(3)當(dāng)時,用累加法求得,由恒成立得,恒成立.用作差法證明數(shù)列是遞增數(shù)列,從而可得最小值,得的一個范圍,再由得的另外一些范圍后可得的范圍
(1)由已知遞推式可得,,;
,,.
由等差數(shù)列知,,得;
(2),則,
由,得或.
當(dāng)時,,,滿足題意;
當(dāng)時,由累加法得,滿足題意;
(3)時,
,
,
當(dāng)時,由恒成立得,恒成立.
設(shè),只需求出的最小值.
.
當(dāng)時,,有;
當(dāng)時,直接驗(yàn)證;
故為最小值,其值為,∴;
當(dāng)時,需滿足恒成立,
對驗(yàn)證,
,;,;,;,.
綜上,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電器專賣店銷售某種型號的空調(diào),記第天(,)的日銷售量為(單位;臺).函數(shù)圖象中的點(diǎn)分別在兩條直線上,如圖,該兩直線交點(diǎn)的橫坐標(biāo)為,已知時,函數(shù).
(1)當(dāng)時,求函數(shù)的解析式;
(2)求的值及該店前天此型號空調(diào)的銷售總量;
(3)按照經(jīng)驗(yàn)判斷,當(dāng)該店此型號空調(diào)的銷售總量達(dá)到或超過臺,且日銷售量仍持續(xù)增加時,該型號空調(diào)開始旺銷,問該店此型號空調(diào)銷售到第幾天時,才可被認(rèn)為開始旺銷?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某傳動裝置由兩個陀螺,組成,陀螺之間沒有滑動,每個陀螺都由具有公共軸的圓錐和圓柱兩個部分構(gòu)成,每個圓柱的底面半徑和高都是相應(yīng)圓錐底面半徑的,且,的軸相互垂直,它們相接觸的直線與的軸所成角,若陀螺中圓錐的底面半徑為();
(1)求陀螺的體積;
(2)當(dāng)陀螺轉(zhuǎn)動一圈時,陀螺中圓錐底面圓周上一點(diǎn)轉(zhuǎn)動到點(diǎn),求與之間的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是奇函數(shù)(其中,)
(1)求的值;
(2)討論的單調(diào)性;
(3)當(dāng)的定義域區(qū)間為時,的值域?yàn)?/span>,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)、、、(),都在函數(shù)(,)的圖像上;
(1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等比數(shù)列;
(2)設(shè),函數(shù)的反函數(shù)為,若函數(shù)與函數(shù)的圖像有公共點(diǎn),求證:在直線上;
(3)設(shè),(),過點(diǎn)、的直線與兩坐標(biāo)軸圍成的三角形面積為,問:數(shù)列是否存在最大項?若存在,求出最大項的值,若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在折線中,,,分別是的中點(diǎn),若折線上滿足條件的點(diǎn)至少有個,則實(shí)數(shù)的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖一塊長方形區(qū)域,,,在邊的中點(diǎn)處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.
(1)當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時,求的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(自轉(zhuǎn)到,再回到,稱“一個來回”,忽略在及處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)邊上有一點(diǎn),且,求點(diǎn)在“一個來回”中被照到的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).
(1)當(dāng)時,求M點(diǎn)的極坐標(biāo);
(2)將射線OM繞原點(diǎn)O逆時針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com