已知函數(shù)f(x)=(log
1
2
x
2-log 
1
2
x+5,x∈[2,4],求f(x)的最值及相應(yīng)的x值.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令log 
1
2
x=t,可得t∈[-2,-1],故f(x)=g(t)=(t-
1
2
)
2
+
19
4
,再利用二次函數(shù)的性質(zhì)求得函數(shù)的最值及相應(yīng)的x值.
解答: 解:令log 
1
2
x=t,∵x∈[2,4],∴t∈[-2,-1],故f(x)=g(t)=(log
1
2
x
2-log 
1
2
x+5=t2-t+5=(t-
1
2
)
2
+
19
4

故g(t)在[-2,-1]上是減函數(shù),故當(dāng)t=-2,即x=4時(shí),函數(shù)取得最大值為11,
當(dāng)t=-1,即x=2時(shí),函數(shù)取得最小值為7.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)的定義域和值域,二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+a9=3a6-4,則S11=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程4x+m•2x+1+m2-m-2=0有解,則實(shí)數(shù)m的取值范圍是( 。
A、[-2,-1)
B、[-2,0)
C、[-2,2)
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{bn}滿足bn+2=-bn+1-bn(n∈N*),b2=2b1
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2+n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-
1
2
,若存在實(shí)數(shù)p,q,對(duì)任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,試求q-p的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=
x2+3x+2a
x
,x∈[2,+∞)
(1)當(dāng)a=
1
2
時(shí),求函數(shù)f(x)的最小值;
(2)若對(duì)任意x∈[2,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
3-|x|
|x|+2
1
2
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一顆正方體骰子,其六個(gè)面上的點(diǎn)數(shù)分別為1,2,3,4,5,6,現(xiàn)將這顆骰子拋擲三次,觀察向上的點(diǎn)數(shù),則三次點(diǎn)數(shù)之和等于15的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知底面邊長為
3
,側(cè)棱長為6的正四棱柱的各頂點(diǎn)均在同一個(gè)球面上,其對(duì)角線為直徑,則該球的體積為( 。
A、
256
3
π
B、7
42
π
C、
500
3
π
D、
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證(a>0,a≠1):
(1)loga(n2+n+1)+loga(n-1)=loga(n3-1)(n>1);
(2)loga(bs+b-s+2)+loga(bs+b-s-2)=2loga(bs-b-s)(b>1,s>0).

查看答案和解析>>

同步練習(xí)冊(cè)答案