【題目】過點作直線與兩坐標軸分別交于點.當的面積上變化時,直線條數(shù)的集合為______.

【答案】

【解析】

顯然,直線有非零斜率,記為,又設直線的方程為.

問題轉(zhuǎn)化為求的可能取值個數(shù),分別取,,

,,

的面積為

.

討論絕對值的符號得關于的兩個方程

(1)當時,由,可求出,.

滿足條件的直線有2條.

(2)當時,式①、②均為的二次方程,其判別式為:

,

,

.

故式①、②中至少存在一個方程有兩個不相等的實根.分兩種情況討論.

1)當時,直接由式①、②解出(注意,.

滿足條件的直線有2條.

2)當時,有三種情況.

(i)時,有

滿足條件的直線有2條.

(ii)時,有

滿足條件的直線有3條.

(iii)時,有,滿足條件的直線有4條.

綜上知,滿足條件的直線條數(shù)的取值集合為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設,若存在,使得不等式成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量, ,設函數(shù),且的圖象過點和點.

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個單位后得到函數(shù)的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】進入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關于x的線性回歸方程。

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

注:回歸方程中斜率和截距最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:①);②當)時,;③當)時,,記數(shù)列的前項和為.

1)求,,的值;

2)若,求的最小值;

3)求證:的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12個球,顏色、大小完全一樣,在重量上,其中一個球不合格,但不知這個球比標準的重還是輕.能否在一架天平上只稱三次(不用砝碼),把這個不合格的球找出來?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】O為坐標原點,動點M在橢圓C上,過Mx軸的垂線,垂足為N,點P滿足.

1)求點P的軌跡方程;

2)設點在直線上,且.證明:過點P且垂直于OQ的直線C的左焦點F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個橢圓的在第一象限的交點為A,直線l經(jīng)過Ω在y軸正半軸上的頂點B且與直線OA(O為坐標原點)垂直,l與Ω的另一個交點為C,l與W交于M,N兩點.

(1)求W的標準方程:

(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】展開式的全體系數(shù)中,有多少個7的倍數(shù)?

查看答案和解析>>

同步練習冊答案