16.已知集合M={0,1},A={(x,y)|x∈M,y∈M},B={(x,y)|y=-x+1},那么A∩B={(0,1),(1,0)}.

分析 根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵M(jìn)={0,1},A={(x,y)|x∈M,y∈M},
∴A={(x,y)|x∈M,y∈M}={(0,0),(0,1),(1,0),(1,1)},
則A∩B={(0,1),(1,0)},
故答案為:{(0,1),(1,0)}

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,求出集合A的等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知A={α|sinα≤$\frac{\sqrt{2}}{2}$,α∈[0,2π)},B={β|cosβ≤$\frac{\sqrt{2}}{2}$,β∈[0,2π)},則A∩B=$\{\frac{π}{4}\}$∪$[\frac{3π}{4},\frac{7π}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓x2+y2=4,圓內(nèi)定點(diǎn)P(1,0),過(guò)P作兩條互相垂直的弦AC和BD,設(shè)AC的傾斜角為可α(0$≤α<\frac{π}{2}$).
(1)求四邊形ABCD的面積S;
(2)當(dāng)S取最大值時(shí),求α及最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.等差數(shù)列a1,a2,…,am的和為-64,而且am-1+a2=-8,那么其項(xiàng)數(shù)m=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=x+1在區(qū)間[1,3]上的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知tanα=$\frac{1}{2}$,且α為第三象限角,求sinα與cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若tanα+cotα=2,則sin4α+cos4α=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\sqrt{3x+6}$的定義域用區(qū)間表示為(  )
A.(-∞,+∞)B.(0,+∞)C.(-2,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{x}$.
(1)直線l為曲線y=f(x)的切線,且l過(guò)原點(diǎn),求l的方程及切點(diǎn).
(2)若k>0,求不等式f(x)+k(1-x)f(x)>0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案