3.函數(shù)y=$\frac{{5-{{(x-3)}^2}}}{x}$(x>0)的最大值為( 。
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$2\sqrt{2}$

分析 將函數(shù)y化為6-(x+$\frac{4}{x}$),由基本不等式a+b≥2$\sqrt{ab}$(a,b>0,a=b取得等號),計算即可得到所求最大值.

解答 解:∵x>0,
∴y=$\frac{{5-{{(x-3)}^2}}}{x}$
=$\frac{5-({x}^{2}-6x+9)}{x}$=$\frac{-4+6x-{x}^{2}}{x}$
=6-(x+$\frac{4}{x}$)≤6-2$\sqrt{x•\frac{4}{x}}$=6-4=2,
當且僅當x=$\frac{4}{x}$即x=2時,取得最大值2.
故選:A.

點評 本題考查函數(shù)的最值的求法,注意運用變形和基本不等式,注意滿足的條件:一正二定三等,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈(-∞,0),2x<3x;命題q:?x∈(-∞,+∞),f(x)=x3+x+6單調(diào)遞增.則下面選項中真命題是( 。
A.(?p)∧qB.(?p)∧(?q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若數(shù)列An:a1、a2、…an(n≥2)滿足|ak+1-ak|=d>0(k=1,2,…,n-1),則稱An為F數(shù)列,并記S(An)=a1+a2+…+an
(1)寫出所有滿足a1=0,S(A4)≤0的F數(shù)列A4
(2)若a1=-1,n=2016,證明:F數(shù)列是遞減數(shù)列的充要條件是an=-2016d;
(3)對任意給定的正整數(shù)n(n≥2),且d∈N*,是否存在a1=0的F數(shù)列An,使得S(An)=0?如果存在,求出正整數(shù)n滿足的條件,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.當點P在圓x2+y2=1上變動時,它與定點Q(-3,0)的連結(jié)線段PQ的中點的軌跡方程是( 。
A.(x+3)2+y2=4B.(x-3)2+y2=4C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x與y 之間的一組數(shù)據(jù):
 x  0  1  2  3
 y  1  3  5  7
則y與x的線性回歸方程y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合M={1,2},集合N={0,1,3},則M∩N=( 。
A.{1,2,3}B.{1,2}C.{0,1}D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若2a=103,0.2b=103,則$\frac{1}{a}$-$\frac{1}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在全班學(xué)生中,選出4名組長的不同選法有m種,選出正、副班長各一名的不同選法有n種,若m:n=13:2,則該班的學(xué)生人數(shù)是( 。
A.10B.15C.20D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x,m,n,y成等差數(shù)列,x,p,q,y成等比數(shù)列,則$\frac{{{{({m+n})}^2}}}{pq}$的取值范圍是(-∞,0]∪[4,+∞).

查看答案和解析>>

同步練習(xí)冊答案