15.若2a=103,0.2b=103,則$\frac{1}{a}$-$\frac{1}$=$\frac{1}{3}$.

分析 由對(duì)數(shù)定義得$a=lo{g}_{2}1{0}^{3}$,$b=lo{g}_{0.2}1{0}^{3}$,由此利用對(duì)數(shù)運(yùn)算法則及換底公式能求出$\frac{1}{a}$-$\frac{1}$.

解答 解:∵2a=103,0.2b=103
∴$a=lo{g}_{2}1{0}^{3}$,$b=lo{g}_{0.2}1{0}^{3}$,
∴$\frac{1}{a}$-$\frac{1}$=log10002-log10000.2=log100010=$\frac{lg10}{lg1000}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查代數(shù)式求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)性質(zhì)、運(yùn)算法則、換底公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.有6名同學(xué)參加演講比賽,編號(hào)分別為1,2,3,4,5,6,比賽結(jié)果設(shè)特等獎(jiǎng)一名,A,B,C,D四名同學(xué)對(duì)于誰獲得特等獎(jiǎng)進(jìn)行預(yù)測(cè):
A說:不是1號(hào)就是2號(hào)獲得特等獎(jiǎng);
B說:3號(hào)不可能獲得特等獎(jiǎng);
C說:4,5,6號(hào)不可能獲得特等獎(jiǎng);
D說:能獲得特等獎(jiǎng)的是4,5,6號(hào)中的一個(gè).
公布的比賽結(jié)果表明,A,B,C,D,四人中只有一人判斷正確.
根據(jù)以上信息,獲得特等獎(jiǎng)的是3號(hào)同學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某開山車制造公司,每天生產(chǎn)某型號(hào)的開山車x臺(tái)(0<x≤10,x∈N*)時(shí),每天銷售收入函數(shù)f(x)=ax2+630lnx+15(單位:萬元),其每天成本滿足g(x)=20x-a(單位:萬元).已知該公司不生產(chǎn)這種型號(hào)的開山車時(shí),其每天成本為5萬元
(Ⅰ)求利潤函數(shù)R(x)的解析式(單位:萬元);
(Ⅱ)問該公司每天生產(chǎn)多少輛大型開山車時(shí),利潤最大,最大利潤是多少?(精確到0.1)
(參考數(shù)據(jù)ln7=1.95,ln8=2.08,ln9=2.20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=$\frac{{5-{{(x-3)}^2}}}{x}$(x>0)的最大值為(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計(jì)算$\frac{lo{g}_{3}2}{lo{g}_{27}64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正實(shí)數(shù)a,b滿足$\frac{1}{a}$+$\frac{1}$=1,則a+b的最小值為( 。
A.1B.2C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≥3}\end{array}\right.$,則z=2x+y的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+x+a(a∈R).
(1)當(dāng)a=1時(shí),解不等式f(x)≥3;
(2)若f(x)≥3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從編號(hào)為0,1,2,…,89的90件產(chǎn)品中,采用系統(tǒng)抽樣的方法抽取容量是9的樣本.若編號(hào)為36的產(chǎn)品在樣本中,則該樣本中產(chǎn)品的最大編號(hào)為86.

查看答案和解析>>

同步練習(xí)冊(cè)答案