9.如圖,在正方體ABCD-A1B1C1D1中,E是線段B1C1上的動點(diǎn),則異面直線AE與直線D1C所成的角為90°.

分析 由已知推導(dǎo)出CD1⊥平面AB1C1,從而AE⊥D1C,由此能求出異面直線AE與直線D1C所成的角的大。

解答 解:在正方形ABCD-A1B1C1D1中,E是線段B1C1上的動點(diǎn),
∵CD1⊥B1C1,CD1⊥AB1,AB1∩B1C1=B1
∴CD1⊥平面AB1C1,
∵AE?平面AB1C1,∴AE⊥D1C,
∴異面直線AE與直線D1C所成的角為90°.
故答案為:90°.

點(diǎn)評 本題考查異面直線所成角的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)bn=$\frac{4}{(n+1)^{2}-1}$(n∈N*),求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是(  )
A.函數(shù)y=2x2-x+1在(0,+∞)上是增函數(shù)
B.冪函數(shù)在(0,+∞)上都是增函數(shù)
C.函數(shù)y=log2(x+$\sqrt{{x}^{2}+1}$)既不是奇函數(shù),也不是偶函數(shù)
D.已知f(x)是定義在R上的增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于曲線C所在平面內(nèi)的點(diǎn)O,若存在以O(shè)為頂點(diǎn)的角θ,使得θ≥∠AOB對于曲線C上的任意兩個(gè)不同點(diǎn)A、B恒成立,則稱θ為曲線C相對于O的“界角”,并稱最小的“界角”為曲線C相對于O的“確界角”,已知曲線M:y=$\left\{\begin{array}{l}{\sqrt{1+9{x}^{2}},x≤0}\\{1+x{e}^{x-1},x>0}\end{array}\right.$,(其中e為自然對數(shù)的底數(shù)),O為坐標(biāo)原點(diǎn),則曲線M相對于O的“確界角”為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$+(1-2a)(a>0)
(1)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍;
(2)證明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)+$\frac{n}{2(n+1)}$(n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖的程序框圖,如果輸入的N是4,那么輸出的p是( 。
A.24B.120C.720D.1440

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.為了增強(qiáng)環(huán)保意識,某校從男生中隨機(jī)制取了60人,從女生中隨機(jī)制取了50人參加環(huán)保知識測試,統(tǒng)計(jì)數(shù)據(jù)如表所示,經(jīng)計(jì)算K2=7.822,則環(huán)保知識是否優(yōu)秀與性別有關(guān)的把握為( 。
優(yōu)秀非優(yōu)秀總計(jì)
男生402060
女生203050
總計(jì)6050110
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.計(jì)算:cos24°cos36°-cos66°cos54°=( 。
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0)處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若$\frac{h(x)-g(x)}{x-{x}_{0}}$>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”,則f(x)=lnx+2x2-x的“類對稱點(diǎn)”的橫坐標(biāo)是(  )
A.eB.$\frac{1}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案