分析 (1)利用余弦定理以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.
(2)利用余弦定理求出a,然后求解三角形的面積.
解答 解:(1)由已知得,$\frac{{{a^2}+{b^2}-{c^2}}}{2ab}tanC=\frac{{\sqrt{2}}}{2}$
則cosC•tanC=$\frac{{\sqrt{2}}}{2}$∴sinC=$\frac{{\sqrt{2}}}{2}$
∴C=$\frac{π}{4}$或C=$\frac{3π}{4}$. …(6分)
(2)∵c=2,$b=2\sqrt{2}$,∴C=$\frac{π}{4}$,
由余弦定理c2=a2+b2-2abcosC得${c^2}={a^2}+{(2\sqrt{2})^2}-2a•2\sqrt{2}•cos\frac{π}{4}$
整理得a2-4a+4=0,解得a=2,
△ABC面積為 $S=\frac{1}{2}ac=\frac{1}{2}×2×2=2$.…(12分)
點(diǎn)評(píng) 本題考查余弦定理的應(yīng)用,三角形的解法,面積的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 16 | C. | 22 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\sqrt{7}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin11°<sin168°<cos10° | B. | sin168°<sin11°<cos10° | ||
C. | sin11°<cos10°<sin168° | D. | sin168°<cos10°<sin11° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com