【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知, ,其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担謩e求出曲線段與線段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
【答案】(1)直角坐標系見解析; 曲線段的方程為: ;
線段的方程為: .
(2) .
【解析】試題分析:(1)以AB為x軸,DA為y軸建立平面直角坐標系,則A(0,0),B(6,0),C(6,-12),D(0,-6).設曲線AC的方程x2=-2py,(p>0,0≤x≤6).代入C坐標即可求得p,即可求出曲線段的方程,由DC兩點坐標即可求出線段的方程;
(2)設出F點橫坐標a,將廠家廣告區(qū)域的面積表示為a的函數(shù),求出函數(shù)的最大值即可.
試題解析:(1)以直線為軸,直線為軸建立平面直角坐標系(如圖所示).
則, , , ,
曲線段的方程為: ;
線段的方程為: ;
(2)設點,則需,即,
則, , .
∴, , ,
則廠家廣告區(qū)域的面積
,
∴,
令,得, .
∴在上是增函數(shù),在上是減函數(shù).
∴.
∴廠家廣告區(qū)域的面積最大值是.
點睛:本題利用已知函數(shù)模型解決實際問題,關鍵是合理建系設出點坐標即可表示出面積的表達式,利用導數(shù)研究單調性即可求出最值.
科目:高中數(shù)學 來源: 題型:
【題目】大家知道,莫言是中國首位獲得諾貝爾獎的文學家,國人歡欣鼓舞.某高校文學社從男女生中各抽取50名同學調查對莫言作品的了解程度,結果如下:
閱讀過莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)試估計該校學生閱讀莫言作品超過50篇的概率;
(Ⅱ)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認為對莫言作品的非常了解與性別有關?
非常了解 | 一般了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)六個從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?
(2)把5件不同產品擺成一排,若產品與產品相鄰,且產品與產品不相鄰,則不同的擺法有幾種?
(3)某次聯(lián)歡會要安排3個歌舞類節(jié)目、2個小品類節(jié)目和1個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=-sin2x+mcosx-1,x∈[].
(1)若f(x)的最小值為-4,求m的值;
(2)當m=2時,若對任意x1,x2∈[-]都有|f(x1)-f(x2)|恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果 ,證明:直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,,為其左、右頂點,為橢圓上除,外任意一點,若記直線,斜率分別為,.
(1)求證:為定值;
(2)若橢圓的長軸長為4,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,求與橢圓相交的弦的中點的橫坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com