1.設(shè)函數(shù)f(x)=kax-a-x(a>0且a≠1,k∈R)是定義域為R的奇函數(shù).
(1)求k的值;
(2)若f(1)<0,判斷f(x)的單調(diào)性(無需證明),并求出使得不等式  f(x2-tx)+f(4-x)>0對任意x∈[1,2]上恒成立的t的取值范圍;
(2)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x,且g(x)≥2mf(x)在x∈[1,2]上恒成立,求m的取值范圍.

分析 (1)利用f(0)=0,求k的值;
(2)由f(1)<0可得0<a<1,由此可判斷f(x)的單調(diào)性,利用函數(shù)的性質(zhì)可去掉符號“f”,化為二次不等式,進(jìn)而可得運用分離參數(shù),求最小值即可;
(3)由f(1)=$\frac{3}{2}$可得a=2,通過換元可把g(x)化為二次函數(shù),討論二次函數(shù)的對稱軸可求最小值,令其大于等于0,可求m的取值范圍.

解答 解:(1)∵f(x)是定義域為R的奇函數(shù),∴f(0)=0,
∴k-1=0,∴k=1,…(2分)
(2)f(x)=ax-a-x(a>0且a≠1),
若f(1)<0,則a-$\frac{1}{a}$<0,
∵a>0且a≠1,
∴a2-1<0,即0<a<1  …(4分)
∵ax單調(diào)遞減,a-x單調(diào)遞增,
故f(x)在R上單調(diào)遞減.
不等式  f(x2-tx)+f(4-x)>0化為f(x2-tx)<f(x-4),
∴x2-tx>x-4,即x2+(-t-1)x+4>0對任意x∈[1,2]上恒成立,
∴t+1<x+$\frac{4}{x}$對任意x∈[1,2]上恒成立,解得t<3;(6分)
(3)f(1)=$\frac{3}{2}$,…(8分),
∴$a-\frac{1}{a}$=$\frac{3}{2}$,
∴a=2或a=-$\frac{1}{2}$(舍去)…(9分)
∴g(x)-2mf(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x2-2m(2x-2-x)+2,
令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x為增函數(shù),
∵2≥x≥1,∴$\frac{15}{4}$≥t≥$\frac{3}{2}$,
g(x)≥2mf(x)在x∈[1,2]上恒成立,可得2m≤t+$\frac{2}{t}$
∴2m≤$\frac{17}{6}$,∴m≤$\frac{17}{12}$,
綜上可知m≤$\frac{17}{12}$.(14分)

點評 本題主要考查函數(shù)恒成立問題,利用換元法結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.綜合較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y2=2px(p>0)的焦點為F,弦AB過F點且傾斜角為60°,|AF|>|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$的值為( 。
A.2B.3C.4D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,三個內(nèi)角A、B、C所對的邊分別為a、b、c,已知A=$\frac{π}{3}$,c=4,△ABC的面積為2$\sqrt{3}$,則a=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)對任意x,y∈R滿足f(x+y)+f(x-y)=2f(x)f(y),則下列關(guān)于函數(shù)奇偶性的說法一定正確的是( 。
A.是偶函數(shù)但不是奇函數(shù)B.是奇函數(shù)但不是偶函數(shù)
C.是非奇非偶函數(shù)D.可能是奇函數(shù)也可能是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義運算$|\begin{array}{l}{a}&\\{c}&259re9z\end{array}|$=ad-bc,則符合條件$|\begin{array}{l}{1}&{-1}\\{z}&{zi}\end{array}|$=2的復(fù)數(shù)z=2-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(1+x-$\frac{2}{x}$)6的展開式中的常數(shù)項是141.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)不等式$\left\{\begin{array}{l}x≥0\\ y≥0\\ y≤-kx+4k\end{array}\right.$,(其中k>0)在平面直角坐標(biāo)系中所表示的區(qū)域為Ω,其面積為S,若C:(x-4)2+(y-3)2=4與區(qū)域Ω有公共點時,求S的最小值為4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知在三角形ABC中,角A,B都是銳角,且sin(B+C)+3sin(A+C)cosC=0,則tanA的最大值為( 。
A.$\frac{3}{4}$B.$\sqrt{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}滿足對任意的n∈N*,都有2an+1-an=0,又a2=8,則S8=$\frac{255}{8}$.

查看答案和解析>>

同步練習(xí)冊答案