分析 由平面圖形的性質(zhì)類比猜想空間幾何體的性質(zhì),一般的思路是:點到線,線到面,或是二維變?nèi)S;由題目中點O在三角形ABC內(nèi),則有結(jié)論S△OBC•$\overrightarrow{OA}$+S△OCA•$\overrightarrow{OB}$+S△OBA•$\overrightarrow{OC}$=$\overrightarrow{0}$,的結(jié)論是二維線段長與向量的關(guān)系式,類比后的結(jié)論應(yīng)該為三維的體積與向量的關(guān)系式.
解答 解:由平面圖形的性質(zhì)類比猜想空間幾何體的性質(zhì),
一般的思路是:點到線,線到面,或是二維變?nèi)S,面積變體積;
由題目中點O在三角形ABC內(nèi),則有結(jié)論S△OBC•$\overrightarrow{OA}$+S△OCA•$\overrightarrow{OB}$+S△OBA•$\overrightarrow{OC}$=$\overrightarrow{0}$,
我們可以推斷若O為四面體ABCD內(nèi)一點,則有VO-BCD•$\overrightarrow{OA}$+VO-ACD•$\overrightarrow{OB}$+VO-ABD•$\overrightarrow{OC}$+VO-ABC•$\overrightarrow{OD}$=$\overrightarrow{0}$.
故答案為:若O為四面體ABCD內(nèi)一點,則有VO-BCD•$\overrightarrow{OA}$+VO-ACD•$\overrightarrow{OB}$+VO-ABD•$\overrightarrow{OC}$+VO-ABC•$\overrightarrow{OD}$=$\overrightarrow{0}$.
點評 本題考查的知識點是類比推理,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com