分析 (1)利用三角函數(shù)周期公式即可計算得解.
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得函數(shù)的單調遞增區(qū)間.
(3)用五點法作函數(shù)y=Asin(ωx+φ)的圖象即可得解.
解答 解:(1)∵f(x)=sin(2x+$\frac{π}{6}$),x∈R.
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
可得函數(shù)f(x)的單調遞增區(qū)間為:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z,
(3)∵函數(shù)f(x)=sin(2x+$\frac{π}{6}$),列表可得:
2x+$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | -$\frac{π}{12}$ | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ |
f(x) | 0 | 1 | 0 | -1 | 0 |
點評 本題主要考查了用五點法作函數(shù)y=Asin(ωx+φ)在一個周期上的簡圖,考查了正弦函數(shù)的單調性、周期性的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 18 | B. | 17 | C. | 16 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x+y-5=0 | B. | x+3y-7=0 | C. | x-3y+5=0 | D. | x-3y-5=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com