11.已知平面向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$($\overrightarrow a$+$\overrightarrow b$)=5,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 設(shè)向量$\overrightarrow a$,$\overrightarrow b$的夾角為θ,利用平面向量的數(shù)量積求出cosθ的值,從而得出θ的值.

解答 解:設(shè)向量$\overrightarrow a$,$\overrightarrow b$的夾角為θ,且θ∈[0,π],
由$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=5可得${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$•$\overrightarrow$=5,
代入數(shù)據(jù)可得22+2×1×cosθ=5,
解得cosθ=$\frac{1}{2}$,
可得θ=$\frac{π}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了數(shù)量積與兩個(gè)向量的夾角的關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某一算法框圖如圖,輸出的S值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.半徑為R的球放在房屋的墻角處,球與圍成墻角的三個(gè)互相垂直的面都相切,若球心到墻角的距離是$\sqrt{3}$,則球的表面積是4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線l1:x-2y+3$\sqrt{5}$=0相切,設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AM⊥x軸于點(diǎn)M,且動(dòng)點(diǎn)N滿足$\overrightarrow{MA}$=$\sqrt{3}$$\overrightarrow{MN}$,設(shè)動(dòng)點(diǎn)N的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)直線l與直線l1垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右頂點(diǎn)和上頂點(diǎn)分別為A和B,右焦點(diǎn)為F.若|AF|、|AB|、3|BF|成等比數(shù)列,則該橢圓的離心率為$\frac{{3-\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若${(\sqrt{x}-\frac{a}{x})^n}$展開式中所有二項(xiàng)式系數(shù)之和是64,常數(shù)項(xiàng)為15,則實(shí)數(shù)a的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義在R上的連續(xù)函數(shù)f(x)滿足f(1)=2,且f(x)在R上的導(dǎo)函數(shù)f′(x)<1,則不等式f(x)<x+1的解集為{x|x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=Asin(ωx-$\frac{π}{3}$)(A>0,ω>0)的最大值為2,其圖象相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期及解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=cosx(\sqrt{3}cosx-sinx)-\sqrt{3}$
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程.
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.
(3)求函數(shù)y=f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值,并求使y=f(x)取得最小值時(shí)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案