9.設(shè)U={x|x是不大于8的正整數(shù)},A={2,4,5,8},B={1,3,5,7},求A∩(∁UB),(∁UA)∩(∁UB).

分析 用列舉法寫(xiě)出集合U,再根據(jù)交集、補(bǔ)集的定義計(jì)算即可.

解答 解:U={x|x是不大于8的正整數(shù)}={1,2,3,4,5,6,7,8},
A={2,4,5,8},B={1,3,5,7},
∴∁UB={2,4,6,8},
∴A∩(∁UB)={2,4,8};
又∁UA={1,3,6,7},
(∁UA)∩(∁UB)={6}.

點(diǎn)評(píng) 本題考查了集合的定義與運(yùn)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.拋物線y2=2px的準(zhǔn)線經(jīng)過(guò)點(diǎn)(-2,2),則該拋物線的焦點(diǎn)坐標(biāo)為(  )
A.(-2,0)B.(2,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=$\frac{{({a}_{n}+1)}^{(n+1)}}{6{(_{n}+2)}^{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-x+c+1有兩個(gè)不同零點(diǎn),且有一個(gè)零點(diǎn)恰為f(x)的極小值點(diǎn),則c的值為(  )
A.0B.$-\frac{5}{3}$C.$-\frac{1}{3}$D.$-\frac{5}{3}$或$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知θ∈(0,2π),且sinθ<tanθ<cotθ,那么θ的取值范圍是( 。
A.$({\frac{π}{4},\frac{π}{2}})$B.$({π,\frac{5π}{4}})$C.$({\frac{5π}{4},\frac{3π}{2}})$D.$({\frac{π}{2},\frac{3π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知ω>0,函數(shù)f(x)=sinωx在區(qū)間$[{-\frac{π}{4},\frac{π}{4}}]$上恰有9個(gè)零點(diǎn),則ω的取值范圍是( 。
A.16≤ω<20B.16≤ω≤20C.16≤ω<18D.16≤ω≤18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)點(diǎn)P在曲線y=$\frac{1}{2}$x2上,從原點(diǎn)向A(2,2)移動(dòng),如果直線OP,曲線y=$\frac{1}{2}$x2及直線x=2所圍成的陰影部分面積分別記為S1、S2
(Ⅰ)當(dāng)S1=S2時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)S1+S2有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知梯形ABCD中,AB⊥AD,$\overrightarrow{AB}=3\overrightarrow{DC},cos∠DAC=\frac{{\sqrt{3}}}{2},\overrightarrow{BE}=m\overrightarrow{BC}$(0<m<1),若|$\overrightarrow{AE}$|2=$|{\overrightarrow{AC}}||{\overrightarrow{AB}}$|,則$\frac{CE}{CB}$=( 。
A.$\frac{1+\sqrt{15}}{7}$B.$\frac{1}{7}$C.$\frac{2}{3}$D.$\frac{2+\sqrt{15}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}滿足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)證明:數(shù)列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若對(duì)一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案