5.已知函數(shù)f(x)=cosx+ax2-1,a∈R,若對于任意的實數(shù)x恒有f(x)≥0,則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{2}$,+∞)B.($\frac{1}{2}$,+∞)C.[-$\frac{1}{4}$,+∞)D.($\frac{1}{4}$,+∞)

分析 對于任意的實數(shù)x恒有f(x)≥0,即有cosx+ax2-1≥0,即ax2≥1-cosx≥0,顯然a≥0,運用參數(shù)分離和二倍角公式可得2a≥($\frac{sin\frac{x}{2}}{\frac{x}{2}}$)2,求出右邊函數(shù)的范圍,即可得到a的范圍.

解答 解:對于任意的實數(shù)x恒有f(x)≥0,即有cosx+ax2-1≥0,
即ax2≥1-cosx≥0,顯然a≥0,
x=0時,顯然成立;由偶函數(shù)的性質(zhì),只要考慮x>0的情況.
當(dāng)x>0時,a≥$\frac{1-cosx}{{x}^{2}}$=$\frac{2si{n}^{2}\frac{x}{2}}{{x}^{2}}$,
即為2a≥($\frac{sin\frac{x}{2}}{\frac{x}{2}}$)2
由x>0,則$\frac{x}{2}$=t>0,考慮sint-t的導(dǎo)數(shù)為cost-1≤0,
即sint-t遞減,即有sint-t<0,即sint<t,
則有$\frac{sint}{t}$<1,故($\frac{sin\frac{x}{2}}{\frac{x}{2}}$)2<1,
即有2a≥1,解得a≥$\frac{1}{2}$.
則實數(shù)a的取值范圍為[$\frac{1}{2}$,+∞).
故選:A.

點評 本題考查不等式恒成立問題的解法,注意運用分類討論的思想方法和轉(zhuǎn)化思想,考查導(dǎo)數(shù)的運用:判斷單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=m-$\frac{2}{{2}^{x}+1}$是定義在R上的奇函數(shù).
(Ⅰ)求m的值;
(Ⅱ)求函數(shù)f(x)在(0,1)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=(2x2-ax-6a2)•ln(x-a)的值域是[0,+∞),則實數(shù)a=-$\frac{2}{5}$或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在ABC中,角A,B,C所對的邊分別為a,b,c,且a2+b2-c2=$\frac{3}{2}$ab.
(Ⅰ)求cos$\frac{C}{2}$的值;
(Ⅱ)若c=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.方程[x]=x+a有解([x]表示不大于x的最大整數(shù)),則參數(shù)a的取值集合是(  )
A.{a|0≤a<1}B.{a|-1<a≤0}C.{a|-1<a<1}D.{a|a∈R,a∉Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項和為Sn,若a1=1,S4=22,則S6=( 。
A.49B.51C.53D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線l:x-y+1=0關(guān)于x軸對稱的直線方程為( 。
A.x+y-1=0B.x-y+1=0C.x+y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在棱長都相等的四面體SABC中,給出如下三個命題:
①異面直線AB與SC所成角為60°;
②BC與平面SAB所成角的余弦值為$\frac{\sqrt{3}}{3}$;
③二面角S-BC-A的余弦值為$\frac{1}{3}$,
其中所有正確命題的序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.同時具有性質(zhì)“周期為π,圖象關(guān)于直線x=$\frac{π}{3}$對稱,在$[-\frac{π}{6},\frac{π}{3}]$上是增函數(shù)”的函數(shù)是(  )
A.$y=sin(\frac{x}{2}+\frac{π}{6})$B.$y=cos(2x+\frac{π}{3})$C.$y=cos(2x-\frac{π}{6})$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

同步練習(xí)冊答案