4.函數(shù)f(x)=x3+3x2+3x-a的極值點(diǎn)的個數(shù)是(  )
A.2B.1C.0D.由a確定

分析 先求出函數(shù)的導(dǎo)數(shù),得到導(dǎo)函數(shù)f′(x)≥0,從而得到結(jié)論.

解答 解:f′(x)=3x2+6x+3=3(x+1)2≥0,
∴函數(shù)f(x)在R上單調(diào)遞增,
∴函數(shù)f(x)=x3+3x2+3x-a的極值點(diǎn)的個數(shù)是0個,
故選:C.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.不等式x(x+2)≥0的解集為( 。
A.{x|x≥0或x≤-2}B.{x|-2≤x≤0}C.{x|0≤x≤2}D.{x|x≤0或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,若A,B,C所對邊的長分別為a,b,c,若a=2,B=$\frac{π}{6}$,c=2$\sqrt{3}$,則b=(  )
A.4B.2C.16-4$\sqrt{3}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,D為BC中點(diǎn),記$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AC}$.
(2)求|$\overrightarrow{AC}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=loga(x-1)+a(a>0,a≠1)的圖象經(jīng)過點(diǎn)(2,3).求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為45°,且(λ$\overrightarrow$-$\overrightarrow{a}$)⊥$\overrightarrow{a}$,則實(shí)數(shù)λ的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{asin2x,0≤x≤π}\end{array}\right.$.若方程f(x)=1有3個不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.{-1}∪(1,+∞)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=-x3+2x2-x(x∈R).
(1)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$\overrightarrow a$是非零向量,λ為負(fù)實(shí)數(shù),下列結(jié)論中正確的是( 。
A.$\overrightarrow a$與$λ\overrightarrow a$的方向相反B.$|{λ\overrightarrow a}|≥|{\overrightarrow a}|$
C.$\overrightarrow a$與${λ^2}\overrightarrow a$的方向相同D.$|{λ\overrightarrow a}|=|λ|\overrightarrow a$

查看答案和解析>>

同步練習(xí)冊答案