若函數(shù)f(x)=x2-2x+1+alnx在x1,x2取得極值,且x1<x2,則f(x2)的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:對f(x)求導(dǎo)數(shù),f′(x)=0有兩個(gè)不同的正實(shí)根x1,x2,由x1、x2的關(guān)系,用x2把a(bǔ)表示出來,求出f(x2)的表達(dá)式最小值即可.
解答: 解:由題意,f(x)=x2-2x+1+alnx的定義域?yàn)椋?,+∞),
∴f′(x)=2x-2+
a
x
=
2x2-2x+a
x
,
∵f(x)有兩個(gè)極值點(diǎn)x1,x2
∴f′(x)=0有兩個(gè)不同的正實(shí)根x1,x2
∵2x2-2x+a=0的判別式△=4-8a>0,解得a<
1
2

方程的兩根為x1=
1-
1-2a
2
,x2=
1+
1-2a
2

∴x1+x2=1,
0<x1<x2,且x1+x2=1,
1
2
<x2<1,a=2x2-2x22,
∴f(x2)=x22-2x2+1+(2x2-2x22)lnx2
令g(t)=t2-2t+1+(2t-2t2)lnt,其中
1
2
<t<1,
則g′(t)=2(1-2t)lnt.
當(dāng)t∈(
1
2
,1)時(shí),g′(t)>0,
∴g(t)在(
1
2
,1)上是增函數(shù).
∴g(t)>g(
1
2
)=
1-2ln2
4

故f(x2)=g(x2)>
1-2ln2
4

故答案為:(
1-2ln2
4
,0).
點(diǎn)評:本題主要考查最值的概念、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識,同時(shí)考查推理論證能力,分類討論等綜合解題能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0.b>0)與橢圓
x2
36
+
y2
32
=1有共同的焦點(diǎn),點(diǎn)A(3,
7
)在雙曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)以P(1,2)為中點(diǎn)作雙曲線C的一條弦AB,求弦AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
lnx+k
ex
(k為常數(shù)),且y=f(x)在x=1處取極值
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=(x2+x)f′(x),證明對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在雙曲線上,且AF2⊥x軸,若
|AF1|
|AF2|
=
5
3
,則雙曲線的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題
①“am2<bm2”是“a<b”的充分必要條件.
②“矩形的兩條對角線相等”的否命題為假.
③在△ABC中,“∠B=60°”是∠A,∠B,∠C三個(gè)角成等差數(shù)列的充要條件.
④△ABC中,若sinA=sinB,則△ABC為直角三角形.
判斷錯(cuò)誤的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
+
b
=2
i
-8
j
+
k
,
a
-
b
=-8
i
+16
j
-3
k
(i,
j
,
k
兩兩互相垂直),那么
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-x3+ax2+1﹙a∈R﹚在(-2,3)內(nèi)有2個(gè)不同的極值點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈N,x2>x3”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+ax2+3x+1有極值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案