1.已知直線l1:(m+2)x-y+5=0與l2:(m+3)x+(18+m)y+2=0垂直,則實(shí)數(shù)m的值為( 。
A.2或4B.1或4C.1或2D.-6或2

分析 對(duì)m分類討論,利用兩條直線相互垂直的條件即可得出.

解答 解:m=-18時(shí),兩條直線不垂直,舍去.
m≠-18時(shí),由l1⊥l2,可得:(m+2)×$(-\frac{m+3}{m+18})$=-1,化為:(m+6)(m-2)=0,解得m=-6,2.滿足條件.
故選:D.

點(diǎn)評(píng) 本題考查了分類討論、兩條直線相互垂直的條件,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2c,直線l:y=kx-kc.若k=$\sqrt{3}$,則l與Γ的左、右兩支各有一個(gè)交點(diǎn);若k=$\sqrt{15}$,則l與Γ的右支有兩個(gè)不同的交點(diǎn),則Γ的離心率的取值范圍為( 。
A.(1,2)B.(1,4)C.(2,4)D.(4,16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知不等式mx2-2mx-1<0.
(1)若對(duì)于所有的實(shí)數(shù)x不等式恒成立,求m的取值范圍;
(2)設(shè)不等式對(duì)于滿足|m|≤1的一切m的值都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知直線l與函數(shù)$f(x)=ln({\sqrt{e}x})-ln({1-x})$的圖象交于A,B兩點(diǎn),若AB中點(diǎn)為點(diǎn)$P({\frac{1}{2},m})$,則m的大小為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)a,b都是不等于1的正數(shù),則“${log_a}^2<{log_b}^2$”是“2a>2b>2”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)(x∈R)滿足f(1+x)=f(3-x),若函數(shù)y=|x2-4x-3|與y=f(x) 圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則$\sum_{i=1}^{m}{x}_{i}$=( 。
A.0B.mC.2mD.4m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,等邊△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過(guò)程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是(  )
A.動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上
B.恒有平面A′GF⊥平面BCED
C.三棱錐A′-EFD的體積有最大值
D.異面直線A′E與BD不可能垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某班級(jí)數(shù)學(xué)興趣小組為了研究人的腳的大小與身高的關(guān)系,隨機(jī)抽測(cè)了20位同學(xué),得到如下數(shù)據(jù):
序號(hào)12345678910
身高x(厘米)192164172177176159171166182166
腳長(zhǎng)y(碼)48384043443740394639
序號(hào)11121314151617181920
身高x(厘米)169178167174168179165170162170
腳長(zhǎng)y(碼)43414043404438423941
(Ⅰ)請(qǐng)根據(jù)“序號(hào)為5的倍數(shù)”的幾組數(shù)據(jù),求出y關(guān)于x的線性回歸方程
(Ⅱ)若“身高大于175厘米”為“高個(gè)”,“身高小于等于175厘米”的為“非高個(gè)”;“腳長(zhǎng)大于42碼”為“大碼”,“腳長(zhǎng)小于等于42碼”的為“非大碼”.請(qǐng)根據(jù)上表數(shù)據(jù)完成2×2列聯(lián)表:并根據(jù)列聯(lián)表中數(shù)據(jù)說(shuō)明能有多大的可靠性認(rèn)為腳的大小與身高之間有關(guān)系?
(Ⅲ)若按下面的方法從這20人中抽取1人來(lái)核查測(cè)量數(shù)據(jù)的誤差:將一個(gè)標(biāo)有1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個(gè)數(shù)字的乘積為被抽取人的序號(hào),求:抽到“無(wú)效序號(hào)(超過(guò)20號(hào))”的概率.
附表及公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知角α的終邊與單位圓交于點(diǎn)$P(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$,則cosα的值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案