9.△ABC中,b2+c2-bc=a2,$\frac{a}$=$\sqrt{3}$,則角C的值為(  )
A.120°B.90°C.60°D.45°

分析 利用余弦定理求出A,正弦定理求出B,然后求解C.

解答 解:△ABC中,b2+c2-bc=a2,
可得cosA=$\frac{1}{2}$,A=60°,
$\frac{a}$=$\sqrt{3}$,由正弦定理可得sinB=$\frac{1}{2}$,因為a>b,∴B=30°.
可得C=90°.
故選:B.

點評 本題考查正弦定理以及余弦定理的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.在三棱錐S-ABC中,△ABC是邊長為2的正三角形,平面SAC⊥平面ABC,$SA=SC=\sqrt{3}$,E,F(xiàn)分別為AB,SB的中點.
(1)證明:AC⊥SB;
(2)求銳二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)y=$\frac{\sqrt{16-{x}^{2}}}{lo{g}_{2}(|x|+x)}$,則它的定義域是(0,$\frac{1}{2}$)∪($\frac{1}{2}$,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知:$A_n^4=40C_n^5$,設$f(x)={(x-\frac{1}{{\root{3}{x}}})^n}$.
(1)求n的值;
(2)寫出f(x)的展開式中所有的有理項;
(3)求f(x)的展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若集合A={x|y=lgx},$B=\left\{{x\left|{\frac{2x+1}{3-x}}\right.<0}\right\}$,則A∩B=( 。
A.$(-∞,-\frac{1}{2})$B.(3,+∞)C.$(-∞,-\frac{1}{2})∪(3,+∞)$D.(0,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(α)=$\frac{{{{cos}^2}(\frac{3π}{2}-α)sin(\frac{π}{2}+α)tan(-π+α)}}{sin(-π+α)tan(-α+3π)}$.
(1)化簡f(α);
(2)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.三棱柱ABC-A1B1C1中,A1-AC-B是直二面角,AA1=A1C=AC=2,AB=BC,且∠ABC=90°,O為AC的中點.
(Ⅰ)若E是BC1的中點,求證:OE∥平面A1AB;
(Ⅱ)求二面角A-A1B-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若命題p:?x∈R,x2>1,則該命題的否定是?x∈R,x2≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知△ABC的面積為S,三內角A,B,C的對邊分別為a,b,c.若4S+a2=b2+c2,則sinC-cos(B+$\frac{π}{4}$)取最大值時C=$\frac{π}{4}$.

查看答案和解析>>

同步練習冊答案