【題目】設(shè),若時(shí)均有,則______.
【答案】
【解析】
當(dāng)a=1時(shí),不等式不可能恒成立;當(dāng)a≠1,若對任意的x>0時(shí)均有,則構(gòu)造函數(shù)y1=(a﹣1)x﹣1,y2=x2﹣3ax﹣1,與x軸交于同一點(diǎn),代入可得答案.
當(dāng)a=1時(shí),代入題中不等式得,明顯不恒成立,舍.
當(dāng)a≠1,構(gòu)造函數(shù)y1=(a﹣1)x﹣1,y2=x2﹣3ax﹣1,它們都過定點(diǎn)P(0,﹣1).
在函數(shù)y1=(a﹣1)x﹣1中,令y=0,得M(,0);
在函數(shù)y2=x2﹣3ax﹣1,∵x>0時(shí),均有成立,
又∵y2=x2﹣3ax﹣1開口向上,隨著的增加,y2>0成立,所以a﹣1>0.
∴y2=x2﹣3ax﹣1顯然過點(diǎn)M(,0),代入得:()2﹣3a﹣1=0,
解之得:a=或a=0(舍去).
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷所得命題的真假.
(1),;
(2)q:所有的正方形都是矩形;
(3),;
(4)s:至少有一個(gè)實(shí)數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切于點(diǎn),圓心在軸上.
(1)求圓的方程;
(2)過點(diǎn)且不與軸重合的直線與圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線分別與直線相交于兩點(diǎn),記,的面積分別是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn)且離心率為.
(1)求橢圓C的方程;
(2)是否存在過點(diǎn)的直線與橢圓C相交于A,B兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知是直線上的動點(diǎn),點(diǎn)的坐標(biāo)是,過的直線與垂直,并且與線段的垂直平分線相交于點(diǎn) .
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)曲線上的動點(diǎn)關(guān)于軸的對稱點(diǎn)為,點(diǎn)的坐標(biāo)為,直線與曲線的另一個(gè)交點(diǎn)為(與不重合),是否存在一個(gè)定點(diǎn),使得三點(diǎn)共線?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com