【題目】若動點在直線上,動點在直線上,設線段的中點為,且,則的取值范圍是__________.
【答案】
【解析】
由直線方程可知兩直線斜率相等,所以,由平行線線的幾何性質知的軌跡為平行于的直線,直線方程為,又點在圓的內部,故的軌跡是如圖所示的線段.即原點和距離的平方.由圖可知,,,,故答案為.
【方法點晴】本題主要考查軌跡方程及解析幾何求最值,屬于難題.解決曲線軌跡中的最值問題一般有兩種方法:一是幾何意義,特別是用曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將曲線軌跡中最值問題轉化為函數(shù)問題,然后根據函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調性法以及均值不等式法.本題是先將轉化為直線上的點與原點距離的平方,然后利用幾何方法解答的.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=2an﹣2.若數(shù)列{bn}滿足bn=10﹣log2an , 則是數(shù)列{bn}的前n項和取最大值時n的值為( )
A.8
B.10
C.8或9
D.9或10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當日最低氣溫(單位: )的數(shù)據,如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求出與的回歸方程;
(2)判斷與之間是正相關還是負相關;若該地1月份某天的最低氣溫為,請用所求回歸方程預測該店當日的銷售量;
(3)設該地1月份的日最低氣溫~,其中近似為樣本平均數(shù), 近似為樣本方差,求.
附:①回歸方程中, , .
②, ,若~,則, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓和定點,由圓外一點向圓引切線,切點為,且滿足.
(1)求實數(shù),滿足的等量關系;
(2)求線段長的最小值;
(3)若以為圓心所作的圓與圓有公共點,試求半徑取最小值時圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=﹣x+5上,求圓C的方程;
(2)在(1)的條件下,過點A作圓C的切線,求切線的方程;
(3)若圓C上存在點M,使|MA|=|MO|,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“累積凈化量”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:
累積凈化量(克) | 12以上 | |||
等級 |
為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?
(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com